Papers
Topics
Authors
Recent
2000 character limit reached

Decoherence through Ancilla Anyon Reservoirs (2312.04638v1)

Published 7 Dec 2023 in cond-mat.str-el and quant-ph

Abstract: We explore the decoherence of the gapless/critical boundary of a topological order, through interactions with the bulk reservoir of "ancilla anyons." We take the critical boundary of the $2d$ toric code as an example. The intrinsic nonlocal nature of the anyons demands the strong and weak symmetry condition for the ordinary decoherence problem be extended to the strong or weak gauge invariance conditions. We demonstrate that in the $\textit{doubled}$ Hilbert space, the partition function of the boundary is mapped to two layers of the $2d$ critical Ising model with an inter-layer line defect that depends on the species of the anyons causing the decoherence. The line defects associated with the tunneling of bosonic $e$ and $m$ anyons are relevant, and result in long-range correlations for either the $e$ or $m$ anyon respectively on the boundary in the doubled Hilbert space. In contrast, the defect of the $f$ anyon is marginal and leads to a line of fixed points with varying effective central charges, and power-law correlations having continuously varying scaling dimensions. We also demonstrate that decoherence-analogues of Majorana zero modes are localized at the spatial interface of the relevant $e$ and $m$ anyon decoherence channels, which leads to a universal logarithmic scaling of the R\'enyi entropy of the boundary.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. C. de Groot, A. Turzillo, and N. Schuch, Symmetry protected topological order in open quantum systems, Quantum 6, 856 (2022).
  2. S. J. Garratt, Z. Weinstein, and E. Altman, Measurements conspire nonlocally to restructure critical quantum states (2022).
  3. J. Y. Lee, Y.-Z. You, and C. Xu, Symmetry protected topological phases under decoherence (2023a), arXiv:2210.16323 [cond-mat.str-el] .
  4. J. Y. Lee, C.-M. Jian, and C. Xu, Quantum criticality under decoherence or weak measurement, PRX Quantum 4, 030317 (2023b).
  5. Y. Zou, S. Sang, and T. H. Hsieh, Channeling quantum criticality, Phys. Rev. Lett. 130, 250403 (2023).
  6. Z. Yang, D. Mao, and C.-M. Jian, Entanglement in a one-dimensional critical state after measurements, Physical Review B 108, 10.1103/physrevb.108.165120 (2023).
  7. K. Su, N. Myerson-Jain, and C. Xu, Conformal field theories generated by chern insulators under quantum decoherence (2023), arXiv:2305.13410 [cond-mat.str-el] .
  8. M. J. Gullans and D. A. Huse, Dynamical Purification Phase Transition Induced by Quantum Measurements, Physical Review X 10, 041020 (2020a), arXiv:1905.05195 [quant-ph] .
  9. Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Phys. Rev. B 101, 104301 (2020), arXiv:1908.04305 [cond-mat.stat-mech] .
  10. M. J. Gullans and D. A. Huse, Scalable Probes of Measurement-Induced Criticality, Phys. Rev. Lett.  125, 070606 (2020b), arXiv:1910.00020 [cond-mat.stat-mech] .
  11. M. Szyniszewski, A. Romito, and H. Schomerus, Entanglement transition from variable-strength weak measurements, Phys. Rev. B 100, 064204 (2019).
  12. A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2 (2003).
  13. M. B. Hastings, Topological order at nonzero temperature, Phys. Rev. Lett. 107, 210501 (2011).
  14. Z. Nussinov and G. Ortiz, Autocorrelations and thermal fragility of anyonic loops in topologically quantum ordered systems, Phys. Rev. B 77, 064302 (2008).
  15. R. Ma and C. Wang, Average symmetry-protected topological phases, Phys. Rev. X 13, 031016 (2023).
  16. A. Jamiołkowski, Linear transformations which preserve trace and positive semidefiniteness of operators, Reports on Mathematical Physics 3, 275 (1972).
  17. M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra and its Applications 10, 285 (1975).
  18. M. Oshikawa and I. Affleck, Boundary conformal field theory approach to the critical two-dimensional ising model with a defect line, Nuclear Physics B 495, 533 (1997).
  19. Since σz→−σz→superscript𝜎𝑧superscript𝜎𝑧\sigma^{z}\rightarrow-\sigma^{z}italic_σ start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT → - italic_σ start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT is a gauge redundancy in our case, the two FM boundary conditions are physically identical.
  20. W. Ji and X.-G. Wen, Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions, Phys. Rev. Res. 2, 033417 (2020).
  21. B. M. McCoy and J. H. H. Perk, Two-spin correlation functions of an ising model with continuous exponents, Phys. Rev. Lett. 44, 840 (1980).
  22. R. Bariev, Effect of linear defects on the local magnetization of a plane ising lattice, JETP 50, 613 (1979).
  23. A. C. Brown, Critical properties of an altered ising model, Phys. Rev. B 25, 331 (1982).
  24. S. Suzuki, J.-i. Inoue, and B. K. Chakrabarti, Quantum Ising Phases and Transitions in Transverse Ising Models, Vol. 859 (2013).
  25. J. L. Cardy, Boundary conditions, fusion rules and the verlinde formula, Nuclear Physics B 324, 581 (1989).
  26. D. C. Lewellen, Sewing constraints for conformal field theories on surfaces with boundaries, Nuclear Physics B 372, 654 (1992).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.