Papers
Topics
Authors
Recent
2000 character limit reached

Geometric phases in generalized radical Floquet dynamics

Published 7 Dec 2023 in quant-ph and cond-mat.str-el | (2312.04500v1)

Abstract: The Pancharatnam phase is a generalization of the Berry phase that applies to discrete sequences of quantum states. Here, we show that the Pancharatnam phase is a natural invariant for a wide class of quantum many-body dynamics involving measurements. We specifically investigate how a non-trivial Pancharatnam phase arises in the trajectories of Floquet quantum error-correcting codes and show that this phase can be extracted in a "computationally-assisted" interferometry protocol, involving additional post-processing based on the measurement record that defines a given quantum many-body trajectory. This Pancharatnam phase can also be directly related to the Berry phase accrued by continuous unitary evolution within a gapped phase. For the $\mathbb Z_2$ Floquet code of Hastings and Haah, we show that the associated family of unitary evolutions is the radical chiral Floquet phase. We demonstrate this correspondence explicitly by studying an exactly-solvable model of interacting spins.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. T. Farrelly, A review of quantum cellular automata, Quantum 4, 368 (2020).
  2. F. Harper and R. Roy, Floquet topological order in interacting systems of bosons and fermions, Phys. Rev. Lett. 118, 115301 (2017).
  3. A. C. Potter and T. Morimoto, Dynamically enriched topological orders in driven two-dimensional systems, Physical Review B 95, 155126 (2017).
  4. M. B. Hastings and J. Haah, Dynamically generated logical qubits, Quantum 5, 564 (2021).
  5. M. Davydova, N. Tantivasadakarn, and S. Balasubramanian, Floquet codes without parent subsystem codes, PRX Quantum 4, 10.1103/prxquantum.4.020341 (2023b).
  6. A. Bauer, Topological error correcting processes from fixed-point path integrals (2023), arXiv:2303.16405 [quant-ph] .
  7. T. D. Ellison, J. Sullivan, and A. Dua, Floquet codes with a twist (2023), arXiv:2306.08027 [quant-ph] .
  8. Z. Zhang, D. Aasen, and S. Vijay, X-cube Floquet code: A dynamical quantum error correcting code with a subextensive number of logical qubits, Physical Review B 108, 205116 (2023).
  9. A. Townsend-Teague, J. M. de la Fuente, and M. Kesselring, Floquetifying the colour code (2023), arXiv:2307.11136 [quant-ph] .
  10. A. Lavasani, Y. Alavirad, and M. Barkeshli, Topological order and criticality in (2+ 1) d monitored random quantum circuits, Physical review letters 127, 235701 (2021).
  11. A. Lavasani, Z.-X. Luo, and S. Vijay, Monitored quantum dynamics and the Kitaev spin liquid, Physical Review B 108, 115135 (2023).
  12. M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392, 45 (1984).
  13. J. Samuel and R. Bhandari, General setting for Berry’s phase, Physical Review Letters 60, 2339 (1988).
  14. These are referred to as inner logical operators because they are non-local stabilizers from the group of check operators that become logical operators in the ISGs.
  15. See Supplementary Material.
  16. J. Sullivan, R. Wen, and A. C. Potter, Floquet codes and phases in twist-defect networks, arXiv preprint arXiv:2303.17664  (2023).
  17. While localizing on-site disorder is conventionally introduced in an additional step, we are concerned with eigenstates of an integrable model; our results are stable under translation symmetry breaking if MBL is introduced.
  18. A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321, 2 (2006).
  19. R. Roy and F. Harper, Periodic table for Floquet topological insulators, Phys. Rev. B 96, 155118 (2017).
  20. J. C. Y. Teo and C. L. Kane, Topological defects and gapless modes in insulators and superconductors, Phys. Rev. B 82, 115120 (2010).
  21. J. Haah and M. B. Hastings, Boundaries for the honeycomb code (2021), arXiv:2110.09545 [quant-ph] .
  22. C. Gidney, M. Newman, and M. McEwen, Benchmarking the planar honeycomb code, Quantum 6, 813 (2022).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.