Geometric phases in generalized radical Floquet dynamics
Abstract: The Pancharatnam phase is a generalization of the Berry phase that applies to discrete sequences of quantum states. Here, we show that the Pancharatnam phase is a natural invariant for a wide class of quantum many-body dynamics involving measurements. We specifically investigate how a non-trivial Pancharatnam phase arises in the trajectories of Floquet quantum error-correcting codes and show that this phase can be extracted in a "computationally-assisted" interferometry protocol, involving additional post-processing based on the measurement record that defines a given quantum many-body trajectory. This Pancharatnam phase can also be directly related to the Berry phase accrued by continuous unitary evolution within a gapped phase. For the $\mathbb Z_2$ Floquet code of Hastings and Haah, we show that the associated family of unitary evolutions is the radical chiral Floquet phase. We demonstrate this correspondence explicitly by studying an exactly-solvable model of interacting spins.
- T. Farrelly, A review of quantum cellular automata, Quantum 4, 368 (2020).
- F. Harper and R. Roy, Floquet topological order in interacting systems of bosons and fermions, Phys. Rev. Lett. 118, 115301 (2017).
- A. C. Potter and T. Morimoto, Dynamically enriched topological orders in driven two-dimensional systems, Physical Review B 95, 155126 (2017).
- M. B. Hastings and J. Haah, Dynamically generated logical qubits, Quantum 5, 564 (2021).
- M. Davydova, N. Tantivasadakarn, and S. Balasubramanian, Floquet codes without parent subsystem codes, PRX Quantum 4, 10.1103/prxquantum.4.020341 (2023b).
- A. Bauer, Topological error correcting processes from fixed-point path integrals (2023), arXiv:2303.16405 [quant-ph] .
- T. D. Ellison, J. Sullivan, and A. Dua, Floquet codes with a twist (2023), arXiv:2306.08027 [quant-ph] .
- Z. Zhang, D. Aasen, and S. Vijay, X-cube Floquet code: A dynamical quantum error correcting code with a subextensive number of logical qubits, Physical Review B 108, 205116 (2023).
- A. Townsend-Teague, J. M. de la Fuente, and M. Kesselring, Floquetifying the colour code (2023), arXiv:2307.11136 [quant-ph] .
- A. Lavasani, Y. Alavirad, and M. Barkeshli, Topological order and criticality in (2+ 1) d monitored random quantum circuits, Physical review letters 127, 235701 (2021).
- A. Lavasani, Z.-X. Luo, and S. Vijay, Monitored quantum dynamics and the Kitaev spin liquid, Physical Review B 108, 115135 (2023).
- M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392, 45 (1984).
- J. Samuel and R. Bhandari, General setting for Berry’s phase, Physical Review Letters 60, 2339 (1988).
- These are referred to as inner logical operators because they are non-local stabilizers from the group of check operators that become logical operators in the ISGs.
- See Supplementary Material.
- J. Sullivan, R. Wen, and A. C. Potter, Floquet codes and phases in twist-defect networks, arXiv preprint arXiv:2303.17664 (2023).
- While localizing on-site disorder is conventionally introduced in an additional step, we are concerned with eigenstates of an integrable model; our results are stable under translation symmetry breaking if MBL is introduced.
- A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321, 2 (2006).
- R. Roy and F. Harper, Periodic table for Floquet topological insulators, Phys. Rev. B 96, 155118 (2017).
- J. C. Y. Teo and C. L. Kane, Topological defects and gapless modes in insulators and superconductors, Phys. Rev. B 82, 115120 (2010).
- J. Haah and M. B. Hastings, Boundaries for the honeycomb code (2021), arXiv:2110.09545 [quant-ph] .
- C. Gidney, M. Newman, and M. McEwen, Benchmarking the planar honeycomb code, Quantum 6, 813 (2022).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.