Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dark Sage: Next-generation semi-analytic galaxy evolution with multidimensional structure and minimal free parameters (2312.04137v2)

Published 7 Dec 2023 in astro-ph.GA, astro-ph.CO, and astro-ph.IM

Abstract: After more than five years of development, we present a new version of Dark Sage, a semi-analytic model (SAM) of galaxy formation that breaks the mould for models of its kind. Included among the major changes is an overhauled treatment of stellar feedback that is derived from energy conservation, operates on local scales, affects gas gradually over time rather than instantaneously, and predicts a mass-loading factor for every galaxy. Building on the model's resolved angular-momentum structure of galaxies, we now consider the heating of stellar discs, delivering predictions for disc structure both radially and vertically. We add a further dimension to stellar discs by tracking the distribution of stellar ages in each annulus. Each annulus--age bin has its own velocity dispersion and metallicity evolved in the model. This allows Dark Sage to make structural predictions for galaxies that previously only hydrodynamic simulations could. We present the model as run on the merger trees of the highest-resolution gravity-only simulation of the MillenniumTNG suite. Despite its additional complexity relative to other SAMs, Dark Sage only has three free parameters, the least of any SAM, which we calibrate exclusively against the cosmic star formation history and the $z=0$ stellar and HI mass functions using a particle-swarm optimisation method. The Dark Sage codebase, written in C and Python, is publicly available at https://github.com/arhstevens/DarkSage

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: