Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An inductive bias from quantum mechanics: learning order effects with non-commuting measurements (2312.03862v1)

Published 6 Dec 2023 in quant-ph

Abstract: There are two major approaches to building good machine learning algorithms: feeding lots of data into large models, or picking a model class with an ''inductive bias'' that suits the structure of the data. When taking the second approach as a starting point to design quantum algorithms for machine learning, it is important to understand how mathematical structures in quantum mechanics can lead to useful inductive biases in quantum models. In this work, we bring a collection of theoretical evidence from the Quantum Cognition literature to the field of Quantum Machine Learning to investigate how non-commutativity of quantum observables can help to learn data with ''order effects'', such as the changes in human answering patterns when swapping the order of questions in a survey. We design a multi-task learning setting in which a generative quantum model consisting of sequential learnable measurements can be adapted to a given task -- or question order -- by changing the order of observables, and we provide artificial datasets inspired by human psychology to carry out our investigation. Our first experimental simulations show that in some cases the quantum model learns more non-commutativity as the amount of order effect present in the data is increased, and that the quantum model can learn to generate better samples for unseen question orders when trained on others - both signs that the model architecture suits the task.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.