Papers
Topics
Authors
Recent
Search
2000 character limit reached

Markov Chain Monte Carlo Multi-Scan Data Association for Sets of Trajectories

Published 6 Dec 2023 in eess.SP | (2312.03423v2)

Abstract: This paper considers a batch solution to the multi-object tracking problem based on sets of trajectories. Specifically, we present two offline implementations of the trajectory Poisson multi-Bernoulli mixture (TPMBM) filter for batch data based on Markov chain Monte Carlo (MCMC) sampling of the data association hypotheses. In contrast to online TPMBM implementations, the proposed offline implementations solve a large-scale, multi-scan data association problem across the entire time interval of interest, and therefore they can fully exploit all the measurement information available. Furthermore, by leveraging the efficient hypothesis structure of TPMBM filters, the proposed implementations compare favorably with other MCMC-based multi-object tracking algorithms. Simulation results show that the TPMBM implementation using the Metropolis-Hastings algorithm presents state-of-the-art multiple trajectory estimation performance.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.