Exploring Lee-Yang and Fisher Zeros in the 2D Ising model through multipoint Padé approximants (2312.03178v3)
Abstract: We present a numerical calculation of the Lee-Yang and Fisher zeros of the 2D Ising model using multi-point Pad\'{e} approximants. We perform simulations for the 2D Ising model with ferromagnetic couplings both in the absence and in the presence of a magnetic field using a cluster spin-flip algorithm. We show that it is possible to extract genuine signature of Lee Yang and Fisher zeros of the theory through the poles of magnetization and specific heat, using multi-point Pad\'{e} method. We extract the poles of magnetization using Pad\'{e} approximants and compare their scaling with known results. We verify the circle theorem associated to the well known behaviour of Lee Yang zeros. We present our finite volume scaling analysis of the zeros done at $T=T_c$ for a few lattice sizes, extracting to a good precision the (combination of) critical exponents $\beta \delta$. The computation at the critical temperature is performed after the latter has been determined via the study of Fisher zeros, thus extracting both $\beta_c$ and the critical exponent $\nu$. Results already exist for extracting the critical exponents for the Ising model in 2 and 3 dimensions making use of Fisher and Lee Yang zeros. In this work, multi-point Pad\'{e} is shown to be competitive with this respect and thus a powerful tool to study phase transitions.
- D. P. Landau, Finite-size behavior of the simple-cubic Ising lattice, Phys. Rev. B 14, 255 (1976).
- A. D. Bruce, Probability density functions for collective coordinates in ising-like systems, Journal of Physics C: Solid State Physics 14, 3667 (1981).
- K. Binder, Critical Properties from Monte Carlo Coarse Graining and Renormalization, Phys. Rev. Lett. 47, 693 (1981a).
- K. Binder, Finite size scaling analysis of Ising model block distribution functions, Z. Phys. B 43, 119 (1981b).
- K. Binder and D. P. Landau, Finite-size scaling at first-order phase transitions, Phys. Rev. B 30, 1477 (1984).
- J. Engels and F. Karsch, Finite size dependence of scaling functions of the three-dimensional O(4) model in an external field, Phys. Rev. D 90, 014501 (2014), arXiv:1402.5302 [hep-lat] .
- C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions. i. theory of condensation, Phys. Rev. 87, 404 (1952).
- T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions. ii. lattice gas and ising model, Phys. Rev. 87, 410 (1952).
- P. J. Kortman and R. B. Griffiths, Density of Zeros on the Lee-Yang Circle for Two Ising Ferromagnets, Phys. Rev. Lett. 27, 1439 (1971).
- M. E. Fisher, Yang-Lee Edge Singularity and phi**3 Field Theory, Phys. Rev. Lett. 40, 1610 (1978).
- C. Itzykson, R. B. Pearson, and J. B. Zuber, Distribution of Zeros in Ising and Gauge Models, Nucl. Phys. B 220, 415 (1983).
- G. Marchesini and R. E. Shrock, Complex Temperature Ising Model: Symmetry Properties and Behavior of Correlation Length and Susceptibility, Nucl. Phys. B 318, 541 (1989).
- V. Matveev and R. Shrock, Complex temperature singularities of the susceptibility in the d = 2 Ising model. 1. Square lattice, J. Phys. A 28, 1557 (1995a), arXiv:hep-lat/9408020 .
- V. Matveev and R. Shrock, Complex temperature properties of the 2-D Ising model with Beta H = (+- i pi/2), J. Phys. A 28, 4859 (1995b), arXiv:hep-lat/9412105 .
- V. Matveev and R. Shrock, Zeros of the partition function for higher spin 2-D Ising models, J. Phys. A 28, L533 (1995c), arXiv:hep-lat/9505005 .
- V. Matveev and R. Shrock, Complex temperature properties of the 2-D Ising model for nonzero magnetic field, Phys. Rev. E 53, 254 (1996), arXiv:cond-mat/9507120 .
- C. Binek, Density of zeros on the lee-yang circle obtained from magnetization data of a two-dimensional ising ferromagnet, Phys. Rev. Lett. 81, 5644 (1998).
- K. P. Gnatenko, A. Kargol, and V. M. Tkachuk, Two-time correlation functions and the lee-yang zeros for an interacting bose gas, Phys. Rev. E 96, 032116 (2017).
- I. BENA, M. DROZ, and A. LIPOWSKI, Statistical mechanics of equilibrium and nonequilibrium phase transitions: The yang–lee formalism, International Journal of Modern Physics B 19, 4269 (2005), https://doi.org/10.1142/S0217979205032759 .
- A. Deger, K. Brandner, and C. Flindt, Lee-yang zeros and large-deviation statistics of a molecular zipper, Phys. Rev. E 97, 012115 (2018).
- A. Deger and C. Flindt, Determination of universal critical exponents using lee-yang theory, Phys. Rev. Res. 1, 023004 (2019).
- D. Majumdar and S. M. Bhattacharjee, Zeros of partition function for continuous phase transitions using cumulants, Physica A: Statistical Mechanics and its Applications 553, 124263 (2020).
- F. Di Renzo and S. Singh, Multi-point Padè for the study of phase transitions: from the Ising model to lattice QCD, PoS LATTICE2022, 148 (2023), arXiv:2301.03528 [hep-lat] .
- This is equivalent to the statement that the partition function is a polynomial in e2βHsuperscript𝑒2𝛽𝐻e^{2\beta H}italic_e start_POSTSUPERSCRIPT 2 italic_β italic_H end_POSTSUPERSCRIPT of order N𝑁Nitalic_N.
- This factor takes into account the number of ways m𝑚mitalic_m up spins and N−m𝑁𝑚N-mitalic_N - italic_m down spins can be put on a lattice, given by N!m!(N−m)!𝑁𝑚𝑁𝑚\frac{N!}{m!(N-m)!}divide start_ARG italic_N ! end_ARG start_ARG italic_m ! ( italic_N - italic_m ) ! end_ARG.
- V. Matveev and R. Shrock, On properties of the ising model for complex energy/temperature and magnetic field, Journal of Physics A: Mathematical and Theoretical 41, 135002 (2008).
- M. E. J. Newman and G. T. Barkema, Monte Carlo methods in statistical physics (Clarendon Press, Oxford, 1999).
- J. Thijssen, Computational Physics, 2nd ed. (Cambridge University Press, 2007).
- E. Ising, Beitrag zur Theorie des Ferromagnetismus, Z. Phys. 31, 253 (1925).
- L. Onsager, Crystal statistics. i. a two-dimensional model with an order-disorder transition, Phys. Rev. 65, 117 (1944).
- For a detailed analysis of extracting the critical exponents from single spin flip algorithms see [69].
- R. H. Swendsen and J.-S. Wang, Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett. 58, 86 (1987).
- U. Wolff, Collective Monte Carlo Updating for Spin Systems, Phys. Rev. Lett. 62, 361 (1989).
- U. Wolff, CRITICAL SLOWING DOWN, Nucl. Phys. B Proc. Suppl. 17, 93 (1990).
- F. Di Renzo, S. Singh, and K. Zambello, Taylor expansions on lefschetz thimbles, Phys. Rev. D 103, 034513 (2021).
- A. Pásztor, Z. Szép, and G. Markó, Apparent convergence of Padé approximants for the crossover line in finite density QCD, Phys. Rev. D 103, 034511 (2021), arXiv:2010.00394 [hep-lat] .
- G. Basar, G. V. Dunne, and Z. Yin, Uniformizing Lee-Yang singularities, Phys. Rev. D 105, 105002 (2022), arXiv:2112.14269 [hep-th] .
- O. Costin and G. V. Dunne, Conformal and Uniformizing Maps in Borel Analysis, Eur. Phys. J. ST 230, 2679 (2021), arXiv:2108.01145 [hep-th] .
- G. A. J. Baker, Essentials of Padé Approximants (Academic Press, Cambridge, Massachusetts, 1975).
- W. Fraser and J. F. Hart, On the computation of rational approximations to continuous functions, Commun. ACM 5, 401 (1962).
- I. Momoniat, A de montessue de ballore theorem for best rational approximation over the whole plane, J. Approx. Theory 54, 123–138 (1988).
- J. Nuttall, The convergence of padé approximants of meromorphic functions, Journal of Mathematical Analysis and Applications 31, 147 (1970).
- C. Pommerenke, Padé approximants and convergence in capacity, Journal of Mathematical Analysis and Applications 41, 775 (1973).
- A. Cuyt, K. Driver, and D. Lubinsky, Nuttall-pommerenke theorems for homogeneous padé approximants, Journal of Computational and Applied Mathematics 67, 141 (1996).
- Chapter 2. stieltjes functions, in Bernstein Functions: Theory and Applications (De Gruyter, 2012) pp. 16–20.
- H. S. Yamada and K. S. Ikeda, A numerical test of pade approximation for some functions with singularity, (2014), arXiv:1308.4453 [math-ph] .
- P. Masjuan, Hunting resonance poles with Rational Approximants, 9th Conference on Quark Confinement and the Hadron Spectrum, (2010), arXiv:1012.2806 [hep-ph] .
- O. Costin, G. V. Dunne, and M. Meynig, Noise effects on Padé approximants and conformal maps *{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT, J. Phys. A 55, 464007 (2022), arXiv:2208.02410 [math-ph] .
- All results shown below have been obtained using the linear algebra routines of MATLAB [70] and all plots have been made using Jupyter notebooks [71].
- In principle we find other zeros and poles very far away from the region of interpolation, however these usually occur when we demand higher order of the Padé approximant and are not stable feature of the approximated function. This kind of structure even occurs when we try to approximate analytic functions.
- The reader may notice this is a slightly different plot than that of Fig. 5 (Top), although they are both using the same input data for the L=15𝐿15L=15italic_L = 15 lattice (all available Taylor coefficients at their central values). The reason is that the rational functions have both been calculated using different methods : the one in Fig. 5 using the Linear solver and the one in this plot using the least square fitting procedure. The goal is to further show the stability of the genuine structure of the poles obtained.
- W. Janke and R. Kenna, The Strength of first and second order phase transitions from partition function zeroes, J. Statist. Phys. 102, 1211 (2001), arXiv:cond-mat/0012026 .
- W. Janke and R. Kenna, Phase transition strengths from the density of partition function zeroes, Nucl. Phys. B Proc. Suppl. 106, 905 (2002), arXiv:hep-lat/0112032 .
- β0subscript𝛽0\beta_{0}italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT shows up together with its complex conjugate β0*subscriptsuperscript𝛽0\beta^{*}_{0}italic_β start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.
- G. L. Johnson, The Universal Location of The Yang Lee Edge Singularity for O(N) Universality Classes, Phd thesis, University of North Carolina (2023), available at https://www.lib.ncsu.edu/resolver/1840.20/41137.
- F. Karsch, C. Schmidt, and S. Singh, Lee-yang and langer edge singularities from analytic continuation of scaling functions (2023), arXiv:2311.13530 [hep-lat] .
- S. Singh, M. Cipressi, and F. Di Renzo, Dataset for ”exploring lee-yang and fisher zeros in the 2d ising model through multipoint padé approximants”, Bielefeld University (2024), dOI: https://doi.org/10.4119/unibi/2988100.
- E. Ibarra-García-Padilla, C. G. Malanche-Flores, and F. J. Poveda-Cuevas, The hobbyhorse of magnetic systems: the Ising model, Eur. J. Phys. 37, 065103 (2016), arXiv:1606.05800 [cond-mat.stat-mech] .
- MATLAB, version 9.7.0.1190202 (R2019b - academic use) (The MathWorks Inc., Natick, Massachusetts, 2019).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.