Papers
Topics
Authors
Recent
2000 character limit reached

Full Counting Statistics of Charge in Quenched Quantum Gases (2312.02929v2)

Published 5 Dec 2023 in cond-mat.stat-mech, cond-mat.quant-gas, cond-mat.str-el, and quant-ph

Abstract: Unless constrained by symmetry, measurement of an observable on an ensemble of identical quantum systems returns a distribution of values which are encoded in the full counting statistics. While the mean value of this distribution is important for determining certain properties of a system, the full distribution can also exhibit universal behavior. In this paper we study the full counting statistics of particle number in one dimensional interacting Bose and Fermi gases which have been quenched far from equilibrium. In particular we consider the time evolution of the Lieb-Liniger and Gaudin-Yang models quenched from a Bose-Einstein condensate initial state and calculate the full counting statistics of the particle number within a subsystem. We show that the scaled cumulants of the charge in the initial state and at long times are simply related and in particular the latter are independent of the model parameters. Using the quasi-particle picture we obtain the full time evolution of the cumulants and find that although their endpoints are fixed, the finite time dynamics depends strongly on the model parameters. We go on to construct the scaled cumulant generating functions and from this determine the limiting charge probability distributions at long time which are shown to exhibit distinct non-trivial and non-Gaussian fluctuations and large deviations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. P. Calabrese, F. H. Essler, and G. Mussardo, Introduction to “Quantum integrability in out of equilibrium systems”, J. Stat. Mech. 2016, 064001 (2016).
  2. L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, J. Stat. Mech. 2016, 064007 (2016).
  3. F. H. L. Essler and M. Fagotti, Quench dynamics and relaxation in isolated integrable quantum spin chains, J. Stat. Mech. 2016, 064002 (2016).
  4. B. Doyon, Lecture notes on generalised hydrodynamics, SciPost Phys. Lect. Notes​ , 18 (2020).
  5. C. Rylands and N. Andrei, Nonequilibrium aspects of integrable models, Annual Review of Condensed Matter Physics 11, 147 (2020).
  6. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1993).
  7. M. Takahashi, Thermodynamics of One-Dimensional Solvable Models (Cambridge University Press, 1999).
  8. J.-S. Caux and F. H. L. Essler, Time evolution of local observables after quenching to an integrable model, Phys. Rev. Lett. 110, 257203 (2013).
  9. J.-S. Caux, The quench action, J. Stat. Mech.: Theory Exp. 2016 (6), 064006.
  10. O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Emergent hydrodynamics in integrable quantum systems out of equilibrium, Phys. Rev. X 6, 041065 (2016).
  11. I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).
  12. X.-W. Guan, M. T. Batchelor, and C. Lee, Fermi gases in one dimension: From bethe ansatz to experiments, Rev. Mod. Phys. 85, 1633 (2013).
  13. E. H. Lieb and D. W. Robinson, The finite group velocity of quantum spin systems, in Statistical mechanics, edited by B. Nachtergaele, J. P. Solovej, and J. Yngvason (Springer, 1972) pp. 425–431.
  14. C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19, 1312 (1967).
  15. M. Gaudin, Un systeme a une dimension de fermions en interaction, Physics Letters A 24, 55 (1967).
  16. A. B. Zamolodchikov and A. B. Zamolodchikov, Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models, Annals of Physics 120, 253 (1979).
  17. T. Kinoshita, T. Wenger, and D. S. Weiss, A quantum Newton’s cradle, Nature (London) 440, 900 (2006).
  18. V. Gritsev, A. Polkovnikov, and E. Demler, Linear response theory for a pair of coupled one-dimensional condensates of interacting atoms, Phys. Rev. B 75, 174511 (2007b).
  19. A. Roy and H. Saleur, Quantum electronic circuit simulation of generalized sine-gordon models, Phys. Rev. B 100, 155425 (2019).
  20. A. Bastianello, The sine-Gordon model from coupled condensates: a generalized hydrodynamics viewpoint, arXiv:2310.04493 (2023).
  21. P. Calabrese and J. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 2005, P04010 (2005).
  22. V. Alba and P. Calabrese, Entanglement and thermodynamics after a quantum quench in integrable systems, Proc. Natl. Acad. Sci. U.S.A. 114, 7947 (2017a).
  23. R. W. Cherng and E. Demler, Quantum noise analysis of spin systems realized with cold atoms, New Journal of Physics 9, 7–7 (2007).
  24. I. Klich and L. Levitov, Quantum noise as an entanglement meter, Phys. Rev. Lett. 102, 100502 (2009).
  25. V. Eisler and Z. Rácz, Full counting statistics in a propagating quantum front and random matrix spectra, Phys. Rev. Lett. 110, 060602 (2013).
  26. V. Eisler, Universality in the full counting statistics of trapped fermions, Phys. Rev. Lett. 111, 080402 (2013).
  27. K. Najafi and M. A. Rajabpour, Full counting statistics of the subsystem energy for free fermions and quantum spin chains, Phys. Rev. B 96, 235109 (2017).
  28. M. Collura, F. H. L. Essler, and S. Groha, Full counting statistics in the spin-1/2 Heisenberg XXZ chain, J. Phys. A: Math. Theor. 50, 414002 (2017).
  29. A. Bastianello and L. Piroli, From the sinh-Gordon field theory to the one-dimensional Bose gas: exact local correlations and full counting statistics, J. Stat. Mech.: Theory Exp. 2018 (11), 113104.
  30. M. Arzamasovs and D. M. Gangardt, Full counting statistics and large deviations in a thermal 1d bose gas, Phys. Rev. Lett. 122, 120401 (2019).
  31. Y. D. van Nieuwkerk and F. H. L. Essler, Self-consistent time-dependent harmonic approximation for the sine-gordon model out of equilibrium, Journal of Statistical Mechanics: Theory and Experiment 2019, 084012 (2019).
  32. G. Perfetto and A. Gambassi, Dynamics of large deviations in the hydrodynamic limit: Noninteracting systems, Phys. Rev. E 102, 042128 (2020).
  33. M. Collura and F. H. L. Essler, How order melts after quantum quenches, Phys. Rev. B 101, 041110 (2020).
  34. H. Oshima and Y. Fuji, Charge fluctuation and charge-resolved entanglement in monitored quantum circuit with u⁢(1)𝑢1u(1)italic_u ( 1 ) symmetry, arXiv:2210.16009 (2022).
  35. E. Tartaglia, P. Calabrese, and B. Bertini, Real-time evolution in the Hubbard model with infinite repulsion, SciPost Phys. 12, 028 (2022).
  36. G. Parez, R. Bonsignori, and P. Calabrese, Quasiparticle dynamics of symmetry-resolved entanglement after a quench: Examples of conformal field theories and free fermions, Phys. Rev. B 103, L041104 (2021a).
  37. G. Parez, R. Bonsignori, and P. Calabrese, Exact quench dynamics of symmetry resolved entanglement in a free fermion chain, J. Stat. Mech.: Theory Exp. 2021 (9), 093102.
  38. S. Scopa and D. X. Horváth, Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench, Journal of Statistical Mechanics: Theory and Experiment 2022, 083104 (2022).
  39. T. Pálmai and S. Sotiriadis, Quench echo and work statistics in integrable quantum field theories, Phys. Rev. E 90, 052102 (2014).
  40. S. Groha, F. H. L. Essler, and P. Calabrese, Full counting statistics in the transverse field Ising chain, SciPost Phys. 4, 043 (2018).
  41. C. Rylands and N. Andrei, Quantum work of an optical lattice, Phys. Rev. B 100, 064308 (2019a).
  42. C. Rylands and N. Andrei, Loschmidt amplitude and work distribution in quenches of the sine-Gordon model, Phys. Rev. B 99, 085133 (2019b).
  43. G. Perfetto, L. Piroli, and A. Gambassi, Quench action and large deviations: Work statistics in the one-dimensional Bose gas, Phys. Rev. E 100, 032114 (2019).
  44. A. Bastianello, L. Piroli, and P. Calabrese, Exact local correlations and full counting statistics for arbitrary states of the one-dimensional interacting Bose gas, Phys. Rev. Lett. 120, 190601 (2018).
  45. B. Doyon and J. Myers, Fluctuations in ballistic transport from euler hydrodynamics, Annales Henri Poincaré 21, 255–302 (2019).
  46. Ž. Krajnik, E. Ilievski, and T. Prosen, Universal distributions of magnetization transfer in integrable spin chains, arXiv preprint arXiv:2303.16691  (2023).
  47. C. Rylands and P. Calabrese, Transport and entanglement across integrable impurities from generalized hydrodynamics, 2303.01779 (2023).
  48. L. Piroli, P. Calabrese, and F. H. L. Essler, Multiparticle bound-state formation following a quantum quench to the one-dimensional Bose gas with attractive interactions, Phys. Rev. Lett. 116, 070408 (2016a).
  49. L. Piroli, P. Calabrese, and F. H. L. Essler, Quantum quenches to the attractive one-dimensional Bose gas: exact results, SciPost Phys. 1, 001 (2016b).
  50. G. Goldstein and N. Andrei, Failure of the local generalized Gibbs ensemble for integrable models with bound states, Phys. Rev. A 90, 043625 (2014).
  51. V. Alba and P. Calabrese, Rényi entropies after releasing the Néel state in the XXZ spin-chain, J. Stat. Mech.: Theory Exp. 2017 (11), 113105.
  52. T. Pálmai and R. M. Konik, Quasilocal charges and the generalized gibbs ensemble in the Lieb-Liniger model, Phys. Rev. E 98, 052126 (2018).
  53. M. Brockmann, Overlaps of q𝑞qitalic_q-raised néel states with XXZ bethe states and their relation to the Lieb–Liniger Bose gas, Journal of Statistical Mechanics: Theory and Experiment 2014, P05006 (2014).
  54. F. Ares, S. Murciano, and P. Calabrese, Entanglement asymmetry as a probe of symmetry breaking, Nat. Commun. 14, 2036 (2023).
  55. C. Rylands, B. Bertini, and P. Calabrese, Integrable quenches in the Hubbard model, J. Stat. Mech. 2022, 103103 (2022).
  56. C. Rylands, P. Calabrese, and B. Bertini, Solution of the bec to bcs quench in one dimension, Phys. Rev. Lett. 130, 023001 (2023).
  57. L. Piroli, B. Pozsgay, and E. Vernier, What is an integrable quench?, Nucl. Phys. B 925, 362 (2017).
  58. A. Bastianello and P. Calabrese, Spreading of entanglement and correlations after a quench with intertwined quasiparticles, SciPost Phys. 5, 33 (2018).
  59. A. Bastianello and M. Collura, Entanglement spreading and quasiparticle picture beyond the pair structure, SciPost Phys. 8, 045 (2020).
  60. G. Cecile, J. D. Nardis, and E. Ilievski, Squeezed ensembles and anomalous dynamic roughening in interacting integrable chains (2023), arXiv:2303.08832 .
Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.