Papers
Topics
Authors
Recent
2000 character limit reached

A Low-cost, High-impact Node Injection Approach for Attacking Social Network Alignment (2312.02790v1)

Published 5 Dec 2023 in cs.SI

Abstract: Social network alignment (SNA) holds significant importance for various downstream applications, prompting numerous professionals to develop and share SNA tools. Unfortunately, these tools can be exploited by malicious actors to integrate sensitive user information, posing cybersecurity risks. While many researchers have explored attacking SNA (ASNA) through a network modification attack way, practical feasibility remains a challenge. This paper introduces a novel approach, the node injection attack. To overcome the problem of modeling and solving within a limited time and balancing costs and benefits, we propose a low-cost, high-impact node injection attack via dynamic programming (DPNIA) framework. DPNIA models ASNA as a problem of maximizing the number of confirmed incorrect correspondent node pairs who have a greater similarity scores than the pairs between existing nodes, making ASNA solvable. Meanwhile, it employs a cross-network evaluation method to identify node vulnerability, facilitating a progressive attack from easy to difficult. Additionally, it utilizes an optimal injection strategy searching method, based on dynamic programming, to determine which links should be added between injected nodes and existing nodes, thereby achieving a high impact for attack effectiveness at a low cost. Experiments on four real-world datasets consistently demonstrate that DPNIA consistently and significantly outperforms various attack baselines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. K. Shu, S. Wang, J. Tang, R. Zafarani, and H. Liu, “User identity linkage across online social networks: A review,” ACM SIGKDD Explorations Newsletter, vol. 18, no. 2, pp. 5–17, Mar. 2017.
  2. P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 5, pp. 833–852, 2019.
  3. J. Xu, C. Li, F. Huang, Z. Li, X. Xie, and S. Y. Philip, “Sinkhorn distance minimization for adaptive semi-supervised social network alignment,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  4. X. Kong, J. Zhang, and P. S. Yu, “Inferring anchor links across multiple heterogeneous social networks,” in Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, San Francisco, CA, USA, Oct. 2013, pp. 179–188.
  5. X. Chen, X. Song, G. Peng, S. Feng, and L. Nie, “Adversarial-enhanced hybrid graph network for user identity linkage,” in Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021, pp. 1084–1093.
  6. L. Liu, P. Chen, X. Li, W. K. Cheung, Y. Zhang, Q. Liu, and G. Wang, “Wl-align: Weisfeiler-lehman relabeling for aligning users across networks via regularized representation learning,” IEEE Transactions on Knowledge and Data Engineering, 2023.
  7. S. Gao, Z. Zhang, S. Su, and S. Y. Philip, “Reborn: Transfer learning based social network alignment,” Information Sciences, vol. 589, pp. 265–282, 2022.
  8. X. Ding, H. Zhang, C. Ma, X. Zhang, and K. Zhong, “User identification across multiple social networks based on naive bayes model,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  9. R. Tang, Z. Miao, S. Jiang, X. Chen, H. Wang, and W. Wang, “Interlayer link prediction in multiplex social networks based on multiple types of consistency between embedding vectors.” IEEE Transactions on Cybernetics, vol. 53, no. 4, pp. 2426–2439, 2023.
  10. Y. Wang, H. Shen, J. Gao, and X. Cheng, “Learning binary hash codes for fast anchor link retrieval across networks,” in Proceedings of the 28nd International Conference on World Wide Web, San Francisco, CA, USA, May 2019, pp. 3335–3341.
  11. R. Tang, X. Chen, C. Wei, Q. Li, W. Wang, H. Wang, and W. Wang, “Interlayer link prediction based on multiple network structural attributes,” Computer Networks, vol. 203, p. 108651, 2022.
  12. S. Zhang and H. Tong, “Attributed network alignment: Problem definitions and fast solutions,” IEEE Transactions on Knowledge & Data Engineering, vol. 31, no. 09, pp. 1680–1692, 2019.
  13. Z. Zeng, S. Zhang, Y. Xia, and H. Tong, “Parrot: Position-aware regularized optimal transport for network alignment,” in Proceedings of the ACM Web Conference 2023, 2023, pp. 372–382.
  14. H. T. Trung, T. Van Vinh, N. T. Tam, H. Yin, M. Weidlich, and N. Q. V. Hung, “Adaptive network alignment with unsupervised and multi-order convolutional networks,” in 2020 IEEE 36th International Conference on Data Engineering (ICDE).   IEEE, 2020, pp. 85–96.
  15. Z. Zhang, Z. Zhang, Y. Zhou, Y. Shen, R. Jin, and D. Dou, “Adversarial attacks on deep graph matching,” Advances in Neural Information Processing Systems, vol. 33, pp. 20 834–20 851, 2020.
  16. R. Tang, S. Jiang, X. Chen, W. Wang, and W. Wang, “Network structural perturbation against interlayer link prediction,” Knowledge-Based Systems, vol. 250, p. 109095, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0950705122005408
  17. J. Shao, Y. Wang, F. Guo, B. Shi, H. Shen, and X. Cheng, “Toak: A topology-oriented attack strategy for degrading user identity linkage in cross-network learning,” in Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 2208–2218.
  18. Z. Zhang, Z. Zhang, Y. Zhou, L. Wu, S. Wu, X. Han, D. Dou, T. Che, and D. Yan, “Adversarial attack against cross-lingual knowledge graph alignment,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021, pp. 5320–5337.
  19. Y. Shen, F. Wang, and H. Jin, “Defending against user identity linkage attack across multiple online social networks,” in Proceedings of the 23rd International Conference on World Wide Web, 2014, pp. 375–376.
  20. Y. Sun, S. Wang, X. Tang, T.-Y. Hsieh, and V. Honavar, “Adversarial attacks on graph neural networks via node injections: A hierarchical reinforcement learning approach,” in Proceedings of the Web Conference 2020, 2020, pp. 673–683.
  21. Z. Wang, Z. Hao, Z. Wang, H. Su, and J. Zhu, “Cluster attack: Query-based adversarial attacks on graph with graph-dependent priors,” in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, L. D. Raedt, Ed.   International Joint Conferences on Artificial Intelligence Organization, 7 2022, pp. 768–775, main Track. [Online]. Available: https://doi.org/10.24963/ijcai.2022/108
  22. Y. Li, Y. Deng, Y. Xiao, and J. Wu, “Attack and defense strategies in complex networks based on game theory,” Journal of Systems Science and Complexity, vol. 32, no. 6, pp. 1630–1640, 2019.
  23. X. Zou, Q. Zheng, Y. Dong, X. Guan, E. Kharlamov, J. Lu, and J. Tang, “Tdgia: Effective injection attacks on graph neural networks,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 2461–2471.
  24. S. Tao, Q. Cao, H. Shen, J. Huang, Y. Wu, and X. Cheng, “Single node injection attack against graph neural networks,” in Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 1794–1803.
  25. X. Mu, F. Zhu, E.-P. Lim, J. Xiao, J. Wang, and Z.-H. Zhou, “User identity linkage by latent user space modelling,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, Aug. 2016, pp. 1775–1784.
  26. D. Zhao, N. Zheng, M. Xu, X. Yang, and J. Xu, “An improved user identification method across social networks via tagging behaviors,” in Proceedings of the 30th International Conference on Tools with Artificial Intelligence, Volos, Greece, Nov. 2018, pp. 616–622.
  27. Y. Li, Y. Peng, Z. Zhang, H. Yin, and Q. Xu, “Matching user accounts across social networks based on username and display name,” World Wide Web, vol. 22, no. 3, pp. 1075–1097, Apr. 2019.
  28. X. Chen, X. Song, S. Cui, T. Gan, Z. Cheng, and L. Nie, “User identity linkage across social media via attentive time-aware user modeling,” IEEE Transactions on Multimedia, vol. 23, pp. 3957–3967, 2020.
  29. C. Riederer, Y. Kim, A. Chaintreau, N. Korula, and S. Lattanzi, “Linking users across domains with location data: Theory and validation,” in Proceedings of the 25th International Conference on World Wide Web, Montreal, Canada, Apr. 2016, pp. 707–719.
  30. J. Feng, M. Zhang, H. Wang, Z. Yang, C. Zhang, Y. Li, and D. Jin, “Dplink: User identity linkage via deep neural network from heterogeneous mobility data,” in Proceedings of the 28th International Conference on World Wide Web, San Francisco, CA, USA, May 2019, pp. 459–469.
  31. X. Zhou, X. Liang, H. Zhang, and Y. Ma, “Cross-platform identification of anonymous identical users in multiple social media networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 2, pp. 411–424, Feb. 2016.
  32. R. Tang, S. Jiang, X. Chen, H. Wang, W. Wang, and W. Wang, “Interlayer link prediction in multiplex social networks: an iterative degree penalty algorithm,” Knowledge-Based Systems, vol. 194, p. 105598, Apr. 2020.
  33. X. Ding, C. Ma, X. Zhang, H.-S. Chen, and H.-F. Zhang, “Soidp: Predicting interlayer links in multiplex networks,” IEEE Transactions on Computational Social Systems, vol. 9, no. 4, pp. 997–1007, 2021.
  34. L. Liu, W. K. Cheung, X. Li, and L. Liao, “Aligning users across social networks using network embedding.” in Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, USA, July 2016, pp. 1774–1780.
  35. T. Man, H. Shen, S. Liu, X. Jin, and X. Cheng, “Predict anchor links across social networks via an embedding approach,” in Proceedings of the 25th International Joint Conference on Artificial Intelligence, vol. 16, New York, USA, July 2016, pp. 1823–1829.
  36. F. Zhou, L. Liu, K. Zhang, G. Trajcevski, J. Wu, and T. Zhong, “Deeplink: A deep learning approach for user identity linkage,” in Proceedings of the 37th IEEE Conference on Computer Communications, Honolulu, HI, USA, Apr. 2018, pp. 1313–1321.
  37. L. Liu, X. Li, W. Cheung, and L. Liao, “Structural representation learning for user alignment across social networks,” IEEE Transactions on Knowledge and Data Engineering, 2019.
  38. X. Zhang, R. Zhang, J. Chen, J. Kim, and Y. Mao, “Semi-supervised entity alignment with global alignment and local information aggregation,” IEEE Transactions on Knowledge and Data Engineering, 2023.
  39. A. Narayanan and V. Shmatikov, “De-anonymizing social networks,” in Proceedings of the 30th IEEE Symposium on Security and Privacy, Oakland, California, USA, May 2009, pp. 173–187.
  40. N. Korula and S. Lattanzi, “An efficient reconciliation algorithm for social networks,” Proceedings of the VLDB Endowment, vol. 7, no. 5, pp. 377–388, Jan. 2014.
  41. Y. Zhu, L. Qin, J. X. Yu, Y. Ke, and X. Lin, “High efficiency and quality: large graphs matching,” The International Journal on Very Large Data Bases, vol. 22, no. 3, pp. 345–368, Sept. 2012.
  42. R. Zafarani, L. Tang, and H. Liu, “User identification across social media,” ACM Transactions on Knowledge Discovery from Data, vol. 10, no. 2, pp. 1–30, Oct. 2015.
  43. Y. Zhang, J. Tang, Z. Yang, J. Pei, and P. S. Yu, “Cosnet: Connecting heterogeneous social networks with local and global consistency,” in Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, Aug. 2015, pp. 1485–1494.
  44. H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of graph embedding: Problems, techniques, and applications,” IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 9, pp. 1616–1637, Feb. 2018.
  45. A. Cheng, C. Zhou, H. Yang, J. Wu, L. Li, J. Tan, and L. Guo, “Deep active learning for anchor user prediction,” in Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug. 2019, pp. 2151–2157.
  46. V.-V. Le, P. Pham, V. Snasel, U. Yun, and B. Vo, “Enhancing anchor link prediction in information networks through integrated embedding techniques,” 2023.
  47. X. Chu, X. Fan, D. Yao, Z. Zhu, J. Huang, and J. Bi, “Cross-network embedding for multi-network alignment,” in Proceedings of the 28nd International Conference on World Wide Web, San Francisco, CA, USA, May 2019, pp. 273–284.
  48. F. Ren, Z. Zhang, J. Zhang, S. Su, L. Sun, G. Zhu, and C. Guo, “Banana: when behavior analysis meets social network alignment,” in International Joint Conference on Artificial Intelligence, 2020.
  49. Y. Wang, C. Feng, L. Chen, H. Yin, C. Guo, and Y. Chu, “User identity linkage across social networks via linked heterogeneous network embedding,” World Wide Web, vol. 22, no. 6, pp. 2611–2632, Apr. 2019.
  50. J. Zhou and J. Fan, “Translink: User identity linkage across heterogeneous social networks via translating embeddings,” in Proceedings of the 38th IEEE Conference on Computer Communications, Paris, France, Apr. 2019, pp. 2116–2124.
  51. J. Shao, Y. Wang, B. Shi, H. Gao, H. Shen, and X. Cheng, “Adversarial for social privacy: A poisoning strategy to degrade user identity linkage,” arXiv preprint arXiv:2209.00269, 2022.
  52. H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Adversarial attack on graph structured data,” in International conference on machine learning.   PMLR, 2018, pp. 1115–1124.
  53. X. Lin, C. Zhou, J. Wu, H. Yang, H. Wang, Y. Cao, and B. Wang, “Exploratory adversarial attacks on graph neural networks for semi-supervised node classification,” Pattern Recognition, vol. 133, p. 109042, 2023.
  54. J. Li, H. Zhang, Z. Han, Y. Rong, H. Cheng, and J. Huang, “Adversarial attack on community detection by hiding individuals,” in Proceedings of The Web Conference 2020, 2020, pp. 917–927.
  55. D. Liu, G. Yang, Y. Wang, H. Jin, and E. Chen, “How to protect ourselves from overlapping community detection in social networks,” IEEE Transactions on Big Data, vol. 8, no. 4, pp. 894–904, 2022.
  56. L. Pan, H.-J. Shang, P. Li, H. Dai, W. Wang, and L. Tian, “Predicting hyperlinks via hypernetwork loop structure,” Europhysics Letters, vol. 135, no. 4, p. 48005, 2021.
  57. H. Peng, C. Qian, D. Zhao, M. Zhong, X. Ling, and W. Wang, “Disintegrate hypergraph networks by attacking hyperedge,” Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 7, pp. 4679–4685, 2022.
  58. Y. Nie, S. Su, T. Lin, Y. Liu, and W. Wang, “Voluntary vaccination on hypergraph,” Communications in Nonlinear Science and Numerical Simulation, p. 107594, 2023.
  59. J. Wang, M. Luo, F. Suya, J. Li, Z. Yang, and Q. Zheng, “Scalable attack on graph data by injecting vicious nodes,” Data Mining and Knowledge Discovery, vol. 34, pp. 1363–1389, 2020.
  60. J. Zhang and S. Y. Philip, “Integrated anchor and social link predictions across social networks,” in Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, July 2015, pp. 2215–2132.
  61. M. Jalili, Y. Orouskhani, M. Asgari, N. Alipourfard, and M. Perc, “Link prediction in multiplex online social networks,” Royal Society open science, vol. 4, no. 2, p. 160863, 2017.
  62. M. De Domenico, A. Lima, P. Mougel, and M. Musolesi, “The anatomy of a scientific rumor,” Scientific reports, vol. 3, no. 1, pp. 1–9, 2013.
  63. S. Yu, M. Zhao, C. Fu, J. Zheng, H. Huang, X. Shu, Q. Xuan, and G. Chen, “Target defense against link-prediction-based attacks via evolutionary perturbations,” IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 2, pp. 754–767, 2021.
  64. L. Lü and T. Zhou, “Link prediction in complex networks: A survey,” Physica A: Statistical Mechanics and its Applications, vol. 390, no. 6, pp. 1150–1170, Mar. 2011.
  65. T. Zhou, M. Medo, G. Cimini, Z.-K. Zhang, and Y.-C. Zhang, “Emergence of scale-free leadership structure in social recommender systems,” PLoS ONE, vol. 6, no. 7, p. e20648, July 2011.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.