Papers
Topics
Authors
Recent
2000 character limit reached

First Constraints on WIMP-Nucleon Effective Field Theory Couplings in an Extended Energy Region From LUX-ZEPLIN (2312.02030v2)

Published 4 Dec 2023 in hep-ex and astro-ph.CO

Abstract: Following the first science results of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time projection chamber operating from the Sanford Underground Research Facility in Lead, South Dakota, USA, we report the initial limits on a model-independent non-relativistic effective field theory describing the complete set of possible interactions of a weakly interacting massive particle (WIMP) with a nucleon. These results utilize the same 5.5 t fiducial mass and 60 live days of exposure collected for the LZ spin-independent and spin-dependent analyses while extending the upper limit of the energy region of interest by a factor of 7.5 to 270 keVnr. No significant excess in this high energy region is observed. Using a profile-likelihood ratio analysis, we report 90% confidence level exclusion limits on the coupling of each individual non-relativistic WIMP-nucleon operator for both elastic and inelastic interactions in the isoscalar and isovector bases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. J. Aalbers et al. (LZ Collaboration), Phys. Rev. Lett. 131, 041002 (2023), arXiv:2207.03764 [hep-ex] .
  2. E. Aprile et al. (XENON Collaboration), Phys. Rev. Lett. 131, 041003 (2023), arXiv:2303.14729 [hep-ex] .
  3. J. Hisano, Les Houches Lect. Notes 108 (2020), 10.1093/oso/9780198855743.003.0011, arXiv:1712.02947 [hep-ph] .
  4. H. Georgi, Annu. Rev. Nucl. Part. Sci. 43, 209 (1993).
  5. D. Akerib et al. (LUX Collaboration), Phys. Rev. D 104 (2021a), 10.1103/physrevd.104.062005.
  6. E. Aprile et al. (XENON Collaboration), Phys. Rev. D 96 (2017), 10.1103/physrevd.96.042004.
  7. P. Adhikari et al. (DEAP), Phys. Rev. D 102, 082001 (2020), [Erratum: Phys.Rev.D 105, 029901 (2022)], arXiv:2005.14667 [astro-ph.CO] .
  8. P. Agnes et al. (DarkSide-50), Phys. Rev. D 101, 062002 (2020), arXiv:2002.07794 [hep-ex] .
  9. B. Ali et al. (PICO), Phys. Rev. D 106, 042004 (2022), arXiv:2204.10340 [astro-ph.CO] .
  10. D. Smith and N. Weiner, Phys. Rev. D 64 (2001), 10.1103/physrevd.64.043502.
  11. T. Han and R. Hempfling, Phys. Lett. B 415, 161–169 (1997).
  12. D. S. Akerib et al. (LZ Collaboration), Nucl. Instrum. Meth. A 953, 163047 (2020a), arXiv:1910.09124 [physics.ins-det] .
  13. B. J. Mount et al. (LZ Collaboration),   (2017), arXiv:1703.09144 [physics.ins-det] .
  14. M. Szydagis et al. (NEST Collaboration), “Noble element simulation technique,”  (2022a).
  15. M. Szydagis et al.,   (2022b), arXiv:2211.10726 [hep-ex] .
  16. D. Akerib et al. (LUX Collaboration), JINST 15, T02007 (2020b).
  17. P. Sorensen and C. E. Dahl, Phys. Rev. D 83 (2011), 10.1103/physrevd.83.063501.
  18. T. Pershing et al., Phys. Rev. D 106 (2022), 10.1103/physrevd.106.052013.
  19. D. S. Akerib et al. (LUX Collaboration), Phys. Rev. D 102, 092004 (2020c), arXiv:2004.07791 [physics.ins-det] .
  20. D. Akerib et al. (LZ Collaboration), Astropart. Phys. 125, 102480 (2021b).
  21. J. Allison et al. (Geant4 Collaboration), Nucl. Instrum. Methods Phys. Res. 835, 186 (2016).
  22. D. Baxter et al., Eur. Phys. J. C 81 (2021), 10.1140/epjc/s10052-021-09655-y.
  23. J. Bland-Hawthorn and O. Gerhard, Annu. Rev. Astron. Astrophys. 54, 529 (2016), https://doi.org/10.1146/annurev-astro-081915-023441 .
  24. Abuter, R. et al. (GRAVITY Collaboration), A&A 647, A59 (2021).
  25. M. C. Smith et al., Mon. Not. Roy. Astron. Soc. 379, 755 (2007), arXiv:astro-ph/0611671 .
  26. J. Lewin and P. Smith, Astropart. Phys. 6, 87 (1996).
  27. J. Aalbers et al. (LZ Collaboration), Phys. Rev. D 108, 012010 (2022), arXiv:2211.17120 [hep-ex] .
  28. D. J. Temples et al., Phys. Rev. D 104, 112001 (2021).
  29. D. Akerib et al. (LZ Collaboration), Eur. Phys. J. 80 (2020d), 10.1140/epjc/s10052-020-8420-x.
  30. D. Akerib et al. (LZ Collaboration), Astropart. Phys. 116, 102391 (2020e).
  31. M. J. Berger, “XCOM: Photon cross sections database,”  (1998).
  32. S. Weinberg, The quantum theory of fields, Vol. 2 (Cambridge university press, 1995).
  33. M. Alnæs et al., Archive of Numerical Software Vol 3, Starting Point and Frequency (2015).
  34. W. Haxton and K. McElvain, https://github.com/Berkeley-Electroweak-Physics/Elastic (2022), accessed: 2022-12-10.
  35. K. Schneck et al., Phys. Rev. D 91, 092004 (2015).
  36. P. Faulkner et al., J. Phys. G 32, N1 (2005).
  37. D. Britton et al., Philos. Trans. R. Soc. A 367, 2447 (2009).
  38. D. Akerib et al. (LUX Collaboration), Phys. Rev. Lett. 118 (2017), 10.1103/physrevlett.118.251302.
  39. Y. Meng et al. (PandaX-4T Collaboration), Phys. Rev. Lett. 127, 261802 (2021), arXiv:2107.13438 [hep-ex] .
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 15 likes about this paper.