Papers
Topics
Authors
Recent
2000 character limit reached

A simple stacked ensemble machine learning model to predict naturalized catchment hydrology and allocation status (2312.01649v1)

Published 4 Dec 2023 in physics.geo-ph

Abstract: New Zealand legislation requires that Regional Councils set limits for water resource usage to manage the effects of abstractions in over-allocated catchments. We propose a simple stacked ensemble machine learning model to predict the probable naturalized hydrology and allocation status across 317 anthropogenically stressed gauged catchments and across 18,612 ungauged river reaches in Otago. The training and testing of ensemble machine learning models provides unbiased results characterized as very good (R2 > 0.8) to extremely good (R2 > 0.9) when predicting naturalized mean annual low flow and Mean flow. Statistical 5-fold stacking identifies varying levels of risk for managing water-resource sustainability in over-allocated catchments; for example, at the respective 5th, 25th, 50th, 75th, and 95th percentiles the number of overallocated catchments are 73, 57, 44, 23, and 22. The proposed model can be applied to inform sustainable stream management in other regional catchments across New Zealand and worldwide.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.