Comparing numerical relativity and perturbation theory waveforms for a non-spinning equal-mass binary (2312.01636v2)
Abstract: Past studies have empirically demonstrated a surprising agreement between gravitational waveforms computed using adiabatic-driven-inspiral point-particle black hole perturbation theory (ppBHPT) and numerical relativity (NR) following a straightforward calibration step, sometimes referred to as $\alpha$-$\beta$ scaling. Specifically focusing on the quadrupole mode, this calibration technique necessitates only two time-independent parameters to scale the overall amplitude and time coordinate. In this article, part of a special issue, we investigate this scaling for non-spinning binaries at the equal mass limit. Even without calibration, NR and ppBHPT waveforms exhibit an unexpected degree of similarity after accounting for different mass scale definitions. Post-calibration, good agreement between ppBHPT and NR waveforms extends nearly up to the point of the merger. We also assess the breakdown of the time-independent assumption of the scaling parameters, shedding light on current limitations and suggesting potential generalizations for the $\alpha$-$\beta$ scaling technique.
- Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models. Phys. Rev. Lett. 2015, 115, 121102, [arXiv:gr-qc/1502.07758]. https://doi.org/10.1103/PhysRevLett.115.121102.
- Numerical relativity waveform surrogate model for generically precessing binary black hole mergers. Phys. Rev. 2017, D96, 024058, [arXiv:gr-qc/1705.07089]. https://doi.org/10.1103/PhysRevD.96.024058.
- A Surrogate Model of Gravitational Waveforms from Numerical Relativity Simulations of Precessing Binary Black Hole Mergers. Phys. Rev. D 2017, 95, 104023, [arXiv:gr-qc/1701.00550]. https://doi.org/10.1103/PhysRevD.95.104023.
- Surrogate model of hybridized numerical relativity binary black hole waveforms. Phys. Rev. 2019, D99, 064045, [arXiv:gr-qc/1812.07865]. https://doi.org/10.1103/PhysRevD.99.064045.
- Surrogate models for precessing binary black hole simulations with unequal masses. Phys. Rev. Research. 2019, 1, 033015, [arXiv:gr-qc/1905.09300]. https://doi.org/10.1103/PhysRevResearch.1.033015.
- Eccentric binary black hole surrogate models for the gravitational waveform and remnant properties: comparable mass, nonspinning case. Phys. Rev. D 2021, 103, 064022, [arXiv:gr-qc/2101.11798]. https://doi.org/10.1103/PhysRevD.103.064022.
- Bohé, A.; et al. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors. Phys. Rev. D 2017, 95, 044028, [arXiv:gr-qc/1611.03703]. https://doi.org/10.1103/PhysRevD.95.044028.
- Enriching the Symphony of Gravitational Waves from Binary Black Holes by Tuning Higher Harmonics. Phys. Rev. D 2018, 98, 084028, [arXiv:gr-qc/1803.10701]. https://doi.org/10.1103/PhysRevD.98.084028.
- Frequency domain reduced order model of aligned-spin effective-one-body waveforms with higher-order modes. Phys. Rev. D 2020, 101, 124040, [arXiv:gr-qc/2003.12079]. https://doi.org/10.1103/PhysRevD.101.124040.
- Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Phys. Rev. D 2014, 89, 084006, [arXiv:gr-qc/1307.6232]. https://doi.org/10.1103/PhysRevD.89.084006.
- Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity. Phys. Rev. D 2017, 95, 024010, [arXiv:gr-qc/1607.05661]. https://doi.org/10.1103/PhysRevD.95.024010.
- Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal. Phys. Rev. D 2016, 93, 044006, [arXiv:gr-qc/1508.07250]. https://doi.org/10.1103/PhysRevD.93.044006.
- Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era. Phys. Rev. D 2016, 93, 044007, [arXiv:gr-qc/1508.07253]. https://doi.org/10.1103/PhysRevD.93.044007.
- First higher-multipole model of gravitational waves from spinning and coalescing black-hole binaries. Phys. Rev. Lett. 2018, 120, 161102, [arXiv:gr-qc/1708.00404]. https://doi.org/10.1103/PhysRevLett.120.161102.
- Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Phys. Rev. D 2019, 100, 024059, [arXiv:gr-qc/1809.10113]. https://doi.org/10.1103/PhysRevD.100.024059.
- Mroue, A.H.; et al. Catalog of 174 Binary Black Hole Simulations for Gravitational Wave Astronomy. Phys. Rev. Lett. 2013, 111, 241104, [arXiv:gr-qc/1304.6077]. https://doi.org/10.1103/PhysRevLett.111.241104.
- Boyle, M.; et al. The SXS Collaboration catalog of binary black hole simulations. Class. Quant. Grav. 2019, 36, 195006, [arXiv:gr-qc/1904.04831]. https://doi.org/10.1088/1361-6382/ab34e2.
- The RIT binary black hole simulations catalog. Class. Quant. Grav. 2017, 34, 224001, [arXiv:gr-qc/1703.03423]. https://doi.org/10.1088/1361-6382/aa91b1.
- Second RIT binary black hole simulations catalog and its application to gravitational waves parameter estimation. Phys. Rev. D 2019, 100, 024021, [arXiv:gr-qc/1901.02553]. https://doi.org/10.1103/PhysRevD.100.024021.
- Third RIT binary black hole simulations catalog. Phys. Rev. D 2020, 102, 104018, [arXiv:gr-qc/2007.07910]. https://doi.org/10.1103/PhysRevD.102.104018.
- Fourth RIT binary black hole simulations catalog: Extension to eccentric orbits. Phys. Rev. D 2022, 105, 124010, [arXiv:gr-qc/2202.00018]. https://doi.org/10.1103/PhysRevD.105.124010.
- Georgia Tech Catalog of Gravitational Waveforms. Class. Quant. Grav. 2016, 33, 204001, [arXiv:gr-qc/1605.03204]. https://doi.org/10.1088/0264-9381/33/20/204001.
- Hamilton, E.; et al. A catalogue of precessing black-hole-binary numerical-relativity simulations 2023. [arXiv:gr-qc/2303.05419].
- Targeted large mass ratio numerical relativity surrogate waveform model for GW190814. Physical Review D 2022, 106, 044001.
- Study of the intermediate mass ratio black hole binary merger up to 1000: 1 with numerical relativity. Classical and Quantum Gravity 2023, 40, 09LT01.
- Perturbative evolution of particle orbits around Kerr black holes: time domain calculation. Class. Quant. Grav. 2003, 20, 3259, [gr-qc/0303054]. https://doi.org/10.1088/0264-9381/20/14/320.
- Khanna, G. Teukolsky evolution of particle orbits around Kerr black holes in the time domain: elliptic and inclined orbits. Phys. Rev. D 2004, 69, 024016, [gr-qc/0309107]. https://doi.org/10.1103/PhysRevD.69.024016.
- Accurate time-domain gravitational waveforms for extreme-mass-ratio binaries. Europhys. Lett. 2007, 78, 60005, [gr-qc/0609002]. https://doi.org/10.1209/0295-5075/78/60005.
- Towards adiabatic waveforms for inspiral into Kerr black holes: II. Dynamical sources and generic orbits. Phys. Rev. D 2008, 78, 024022, [arXiv:gr-qc/0803.0317]. https://doi.org/10.1103/PhysRevD.78.024022.
- Binary black hole merger gravitational waves and recoil in the large mass ratio limit. Phys. Rev. D 2010, 81, 104009, [arXiv:gr-qc/1003.0485]. https://doi.org/10.1103/PhysRevD.81.104009.
- Null infinity waveforms from extreme-mass-ratio inspirals in Kerr spacetime. Phys. Rev. X 2011, 1, 021017, [arXiv:gr-qc/1108.1816]. https://doi.org/10.1103/PhysRevX.1.021017.
- New numerical methods to evaluate homogeneous solutions of the Teukolsky equation. Prog. Theor. Phys. 2004, 112, 415–450, [gr-qc/0410018]. https://doi.org/10.1143/PTP.112.415.
- New Numerical Methods to Evaluate Homogeneous Solutions of the Teukolsky Equation II. Solutions of the Continued Fraction Equation. Prog. Theor. Phys. 2005, 113, 1165–1182, [arXiv:gr-qc/0904.3818]. https://doi.org/10.1143/PTP.113.1165.
- Analytic solutions of the Teukolsky equation and their low frequency expansions. Prog. Theor. Phys. 1996, 95, 1079–1096, [gr-qc/9603020]. https://doi.org/10.1143/PTP.95.1079.
- Throwe, W.W.T. High precision calculation of generic extreme mass ratio inspirals. PhD thesis, Massachusetts Institute of Technology, 2010.
- Strong-field tidal distortions of rotating black holes: Formalism and results for circular, equatorial orbits. Phys. Rev. D 2014, 90, 124039, [arXiv:gr-qc/1407.6983]. [Erratum: Phys.Rev.D 91, 109901 (2015)], https://doi.org/10.1103/PhysRevD.91.109901.
- Gravitational wave snapshots of generic extreme mass ratio inspirals. Phys. Rev. D 2006, 73, 024027, [gr-qc/0509101]. [Erratum: Phys.Rev.D 88, 109905 (2013), Erratum: Phys.Rev.D 90, 109905 (2014)], https://doi.org/10.1103/PhysRevD.73.024027.
- Colliding black holes: The Close limit. Phys. Rev. Lett. 1994, 72, 3297–3300, [gr-qc/9402039]. https://doi.org/10.1103/PhysRevLett.72.3297.
- Intermediate Mass Ratio Black Hole Binaries: Numerical Relativity meets Perturbation Theory. Phys. Rev. Lett. 2010, 104, 211101, [arXiv:gr-qc/1001.2316]. https://doi.org/10.1103/PhysRevLett.104.211101.
- Intermediate-mass-ratio black hole binaries: Intertwining numerical and perturbative techniques. Phys. Rev. D 2010, 82, 104057, [arXiv:gr-qc/1008.4360]. https://doi.org/10.1103/PhysRevD.82.104057.
- Intermediate-mass-ratio black hole binaries II: Modeling Trajectories and Gravitational Waveforms. Phys. Rev. D 2011, 84, 124006, [arXiv:gr-qc/1108.4421]. https://doi.org/10.1103/PhysRevD.84.124006.
- Black hole perturbation theory and gravitational self-force 2021. [arXiv:gr-qc/2101.04592].
- Two-timescale evolution of extreme-mass-ratio inspirals: waveform generation scheme for quasicircular orbits in Schwarzschild spacetime. Phys. Rev. D 2021, 103, 064048, [arXiv:gr-qc/2006.11263]. https://doi.org/10.1103/PhysRevD.103.064048.
- Gravitational waveforms for compact binaries from second-order self-force theory 2021. [arXiv:gr-qc/2112.12265].
- Surrogate model for gravitational wave signals from nonspinning, comparable-to large-mass-ratio black hole binaries built on black hole perturbation theory waveforms calibrated to numerical relativity. Phys. Rev. D 2022, 106, 104025, [arXiv:gr-qc/2204.01972]. https://doi.org/10.1103/PhysRevD.106.104025.
- Surrogate model for gravitational wave signals from comparable and large-mass-ratio black hole binaries. Phys. Rev. D 2020, 101, 081502, [arXiv:gr-qc/1910.10473]. https://doi.org/10.1103/PhysRevD.101.081502.
- Headon collision of two black holes: Comparison of different approaches. Phys. Rev. D 1995, 52, 4462–4480, [gr-qc/9505042]. https://doi.org/10.1103/PhysRevD.52.4462.
- The Collision of boosted black holes. Phys. Rev. D 1997, 55, 829–834, [gr-qc/9608064]. https://doi.org/10.1103/PhysRevD.55.829.
- A Slightly less grand challenge: Colliding black holes using perturbation techniques. In Proceedings of the 18th Texas Symposium on Relativistic Astrophysics, 10 1996, pp. 604–606, [gr-qc/9710011].
- Inspiralling black holes: The Close limit. Phys. Rev. Lett. 1999, 83, 3581–3584, [gr-qc/9905081]. https://doi.org/10.1103/PhysRevLett.83.3581.
- Close limit of grazing black hole collisions: Nonspinning holes. New J. Phys. 2000, 2, 3, [gr-qc/0003003]. https://doi.org/10.1088/1367-2630/2/1/303.
- Towards adiabatic waveforms for inspiral into Kerr black holes. I. A New model of the source for the time domain perturbation equation. Phys. Rev. D 2007, 76, 104005, [gr-qc/0703028]. https://doi.org/10.1103/PhysRevD.76.104005.
- BHPTNRSurrogate. http://bhptoolkit.org/BHPTNRSurrogate/.
- Black Hole Perturbation Toolkit. (bhptoolkit.org).
- Interplay between numerical relativity and perturbation theory: Finite size effects. Phys. Rev. D 2023, 108, 044012, [arXiv:gr-qc/2306.08767]. https://doi.org/10.1103/PhysRevD.108.044012.
- Remnant black hole properties from numerical-relativity-informed perturbation theory and implications for waveform modelling 2023. [arXiv:gr-qc/2301.07215].
- On the approximate relation between black-hole perturbation theory and numerical relativity 2023. [arXiv:gr-qc/2307.03155].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.