Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Comparing numerical relativity and perturbation theory waveforms for a non-spinning equal-mass binary (2312.01636v2)

Published 4 Dec 2023 in gr-qc

Abstract: Past studies have empirically demonstrated a surprising agreement between gravitational waveforms computed using adiabatic-driven-inspiral point-particle black hole perturbation theory (ppBHPT) and numerical relativity (NR) following a straightforward calibration step, sometimes referred to as $\alpha$-$\beta$ scaling. Specifically focusing on the quadrupole mode, this calibration technique necessitates only two time-independent parameters to scale the overall amplitude and time coordinate. In this article, part of a special issue, we investigate this scaling for non-spinning binaries at the equal mass limit. Even without calibration, NR and ppBHPT waveforms exhibit an unexpected degree of similarity after accounting for different mass scale definitions. Post-calibration, good agreement between ppBHPT and NR waveforms extends nearly up to the point of the merger. We also assess the breakdown of the time-independent assumption of the scaling parameters, shedding light on current limitations and suggesting potential generalizations for the $\alpha$-$\beta$ scaling technique.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models. Phys. Rev. Lett. 2015, 115, 121102, [arXiv:gr-qc/1502.07758]. https://doi.org/10.1103/PhysRevLett.115.121102.
  2. Numerical relativity waveform surrogate model for generically precessing binary black hole mergers. Phys. Rev. 2017, D96, 024058, [arXiv:gr-qc/1705.07089]. https://doi.org/10.1103/PhysRevD.96.024058.
  3. A Surrogate Model of Gravitational Waveforms from Numerical Relativity Simulations of Precessing Binary Black Hole Mergers. Phys. Rev. D 2017, 95, 104023, [arXiv:gr-qc/1701.00550]. https://doi.org/10.1103/PhysRevD.95.104023.
  4. Surrogate model of hybridized numerical relativity binary black hole waveforms. Phys. Rev. 2019, D99, 064045, [arXiv:gr-qc/1812.07865]. https://doi.org/10.1103/PhysRevD.99.064045.
  5. Surrogate models for precessing binary black hole simulations with unequal masses. Phys. Rev. Research. 2019, 1, 033015, [arXiv:gr-qc/1905.09300]. https://doi.org/10.1103/PhysRevResearch.1.033015.
  6. Eccentric binary black hole surrogate models for the gravitational waveform and remnant properties: comparable mass, nonspinning case. Phys. Rev. D 2021, 103, 064022, [arXiv:gr-qc/2101.11798]. https://doi.org/10.1103/PhysRevD.103.064022.
  7. Bohé, A.; et al. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors. Phys. Rev. D 2017, 95, 044028, [arXiv:gr-qc/1611.03703]. https://doi.org/10.1103/PhysRevD.95.044028.
  8. Enriching the Symphony of Gravitational Waves from Binary Black Holes by Tuning Higher Harmonics. Phys. Rev. D 2018, 98, 084028, [arXiv:gr-qc/1803.10701]. https://doi.org/10.1103/PhysRevD.98.084028.
  9. Frequency domain reduced order model of aligned-spin effective-one-body waveforms with higher-order modes. Phys. Rev. D 2020, 101, 124040, [arXiv:gr-qc/2003.12079]. https://doi.org/10.1103/PhysRevD.101.124040.
  10. Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Phys. Rev. D 2014, 89, 084006, [arXiv:gr-qc/1307.6232]. https://doi.org/10.1103/PhysRevD.89.084006.
  11. Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity. Phys. Rev. D 2017, 95, 024010, [arXiv:gr-qc/1607.05661]. https://doi.org/10.1103/PhysRevD.95.024010.
  12. Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal. Phys. Rev. D 2016, 93, 044006, [arXiv:gr-qc/1508.07250]. https://doi.org/10.1103/PhysRevD.93.044006.
  13. Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era. Phys. Rev. D 2016, 93, 044007, [arXiv:gr-qc/1508.07253]. https://doi.org/10.1103/PhysRevD.93.044007.
  14. First higher-multipole model of gravitational waves from spinning and coalescing black-hole binaries. Phys. Rev. Lett. 2018, 120, 161102, [arXiv:gr-qc/1708.00404]. https://doi.org/10.1103/PhysRevLett.120.161102.
  15. Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Phys. Rev. D 2019, 100, 024059, [arXiv:gr-qc/1809.10113]. https://doi.org/10.1103/PhysRevD.100.024059.
  16. Mroue, A.H.; et al. Catalog of 174 Binary Black Hole Simulations for Gravitational Wave Astronomy. Phys. Rev. Lett. 2013, 111, 241104, [arXiv:gr-qc/1304.6077]. https://doi.org/10.1103/PhysRevLett.111.241104.
  17. Boyle, M.; et al. The SXS Collaboration catalog of binary black hole simulations. Class. Quant. Grav. 2019, 36, 195006, [arXiv:gr-qc/1904.04831]. https://doi.org/10.1088/1361-6382/ab34e2.
  18. The RIT binary black hole simulations catalog. Class. Quant. Grav. 2017, 34, 224001, [arXiv:gr-qc/1703.03423]. https://doi.org/10.1088/1361-6382/aa91b1.
  19. Second RIT binary black hole simulations catalog and its application to gravitational waves parameter estimation. Phys. Rev. D 2019, 100, 024021, [arXiv:gr-qc/1901.02553]. https://doi.org/10.1103/PhysRevD.100.024021.
  20. Third RIT binary black hole simulations catalog. Phys. Rev. D 2020, 102, 104018, [arXiv:gr-qc/2007.07910]. https://doi.org/10.1103/PhysRevD.102.104018.
  21. Fourth RIT binary black hole simulations catalog: Extension to eccentric orbits. Phys. Rev. D 2022, 105, 124010, [arXiv:gr-qc/2202.00018]. https://doi.org/10.1103/PhysRevD.105.124010.
  22. Georgia Tech Catalog of Gravitational Waveforms. Class. Quant. Grav. 2016, 33, 204001, [arXiv:gr-qc/1605.03204]. https://doi.org/10.1088/0264-9381/33/20/204001.
  23. Hamilton, E.; et al. A catalogue of precessing black-hole-binary numerical-relativity simulations 2023. [arXiv:gr-qc/2303.05419].
  24. Targeted large mass ratio numerical relativity surrogate waveform model for GW190814. Physical Review D 2022, 106, 044001.
  25. Study of the intermediate mass ratio black hole binary merger up to 1000: 1 with numerical relativity. Classical and Quantum Gravity 2023, 40, 09LT01.
  26. Perturbative evolution of particle orbits around Kerr black holes: time domain calculation. Class. Quant. Grav. 2003, 20, 3259, [gr-qc/0303054]. https://doi.org/10.1088/0264-9381/20/14/320.
  27. Khanna, G. Teukolsky evolution of particle orbits around Kerr black holes in the time domain: elliptic and inclined orbits. Phys. Rev. D 2004, 69, 024016, [gr-qc/0309107]. https://doi.org/10.1103/PhysRevD.69.024016.
  28. Accurate time-domain gravitational waveforms for extreme-mass-ratio binaries. Europhys. Lett. 2007, 78, 60005, [gr-qc/0609002]. https://doi.org/10.1209/0295-5075/78/60005.
  29. Towards adiabatic waveforms for inspiral into Kerr black holes: II. Dynamical sources and generic orbits. Phys. Rev. D 2008, 78, 024022, [arXiv:gr-qc/0803.0317]. https://doi.org/10.1103/PhysRevD.78.024022.
  30. Binary black hole merger gravitational waves and recoil in the large mass ratio limit. Phys. Rev. D 2010, 81, 104009, [arXiv:gr-qc/1003.0485]. https://doi.org/10.1103/PhysRevD.81.104009.
  31. Null infinity waveforms from extreme-mass-ratio inspirals in Kerr spacetime. Phys. Rev. X 2011, 1, 021017, [arXiv:gr-qc/1108.1816]. https://doi.org/10.1103/PhysRevX.1.021017.
  32. New numerical methods to evaluate homogeneous solutions of the Teukolsky equation. Prog. Theor. Phys. 2004, 112, 415–450, [gr-qc/0410018]. https://doi.org/10.1143/PTP.112.415.
  33. New Numerical Methods to Evaluate Homogeneous Solutions of the Teukolsky Equation II. Solutions of the Continued Fraction Equation. Prog. Theor. Phys. 2005, 113, 1165–1182, [arXiv:gr-qc/0904.3818]. https://doi.org/10.1143/PTP.113.1165.
  34. Analytic solutions of the Teukolsky equation and their low frequency expansions. Prog. Theor. Phys. 1996, 95, 1079–1096, [gr-qc/9603020]. https://doi.org/10.1143/PTP.95.1079.
  35. Throwe, W.W.T. High precision calculation of generic extreme mass ratio inspirals. PhD thesis, Massachusetts Institute of Technology, 2010.
  36. Strong-field tidal distortions of rotating black holes: Formalism and results for circular, equatorial orbits. Phys. Rev. D 2014, 90, 124039, [arXiv:gr-qc/1407.6983]. [Erratum: Phys.Rev.D 91, 109901 (2015)], https://doi.org/10.1103/PhysRevD.91.109901.
  37. Gravitational wave snapshots of generic extreme mass ratio inspirals. Phys. Rev. D 2006, 73, 024027, [gr-qc/0509101]. [Erratum: Phys.Rev.D 88, 109905 (2013), Erratum: Phys.Rev.D 90, 109905 (2014)], https://doi.org/10.1103/PhysRevD.73.024027.
  38. Colliding black holes: The Close limit. Phys. Rev. Lett. 1994, 72, 3297–3300, [gr-qc/9402039]. https://doi.org/10.1103/PhysRevLett.72.3297.
  39. Intermediate Mass Ratio Black Hole Binaries: Numerical Relativity meets Perturbation Theory. Phys. Rev. Lett. 2010, 104, 211101, [arXiv:gr-qc/1001.2316]. https://doi.org/10.1103/PhysRevLett.104.211101.
  40. Intermediate-mass-ratio black hole binaries: Intertwining numerical and perturbative techniques. Phys. Rev. D 2010, 82, 104057, [arXiv:gr-qc/1008.4360]. https://doi.org/10.1103/PhysRevD.82.104057.
  41. Intermediate-mass-ratio black hole binaries II: Modeling Trajectories and Gravitational Waveforms. Phys. Rev. D 2011, 84, 124006, [arXiv:gr-qc/1108.4421]. https://doi.org/10.1103/PhysRevD.84.124006.
  42. Black hole perturbation theory and gravitational self-force 2021. [arXiv:gr-qc/2101.04592].
  43. Two-timescale evolution of extreme-mass-ratio inspirals: waveform generation scheme for quasicircular orbits in Schwarzschild spacetime. Phys. Rev. D 2021, 103, 064048, [arXiv:gr-qc/2006.11263]. https://doi.org/10.1103/PhysRevD.103.064048.
  44. Gravitational waveforms for compact binaries from second-order self-force theory 2021. [arXiv:gr-qc/2112.12265].
  45. Surrogate model for gravitational wave signals from nonspinning, comparable-to large-mass-ratio black hole binaries built on black hole perturbation theory waveforms calibrated to numerical relativity. Phys. Rev. D 2022, 106, 104025, [arXiv:gr-qc/2204.01972]. https://doi.org/10.1103/PhysRevD.106.104025.
  46. Surrogate model for gravitational wave signals from comparable and large-mass-ratio black hole binaries. Phys. Rev. D 2020, 101, 081502, [arXiv:gr-qc/1910.10473]. https://doi.org/10.1103/PhysRevD.101.081502.
  47. Headon collision of two black holes: Comparison of different approaches. Phys. Rev. D 1995, 52, 4462–4480, [gr-qc/9505042]. https://doi.org/10.1103/PhysRevD.52.4462.
  48. The Collision of boosted black holes. Phys. Rev. D 1997, 55, 829–834, [gr-qc/9608064]. https://doi.org/10.1103/PhysRevD.55.829.
  49. A Slightly less grand challenge: Colliding black holes using perturbation techniques. In Proceedings of the 18th Texas Symposium on Relativistic Astrophysics, 10 1996, pp. 604–606, [gr-qc/9710011].
  50. Inspiralling black holes: The Close limit. Phys. Rev. Lett. 1999, 83, 3581–3584, [gr-qc/9905081]. https://doi.org/10.1103/PhysRevLett.83.3581.
  51. Close limit of grazing black hole collisions: Nonspinning holes. New J. Phys. 2000, 2, 3, [gr-qc/0003003]. https://doi.org/10.1088/1367-2630/2/1/303.
  52. Towards adiabatic waveforms for inspiral into Kerr black holes. I. A New model of the source for the time domain perturbation equation. Phys. Rev. D 2007, 76, 104005, [gr-qc/0703028]. https://doi.org/10.1103/PhysRevD.76.104005.
  53. BHPTNRSurrogate. http://bhptoolkit.org/BHPTNRSurrogate/.
  54. Black Hole Perturbation Toolkit. (bhptoolkit.org).
  55. Interplay between numerical relativity and perturbation theory: Finite size effects. Phys. Rev. D 2023, 108, 044012, [arXiv:gr-qc/2306.08767]. https://doi.org/10.1103/PhysRevD.108.044012.
  56. Remnant black hole properties from numerical-relativity-informed perturbation theory and implications for waveform modelling 2023. [arXiv:gr-qc/2301.07215].
  57. On the approximate relation between black-hole perturbation theory and numerical relativity 2023. [arXiv:gr-qc/2307.03155].

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.