Conserved cosmological perturbations in USR inflation and bouncing scenarios (2312.01425v2)
Abstract: Inflationary and bouncing scenarios are two frameworks that provide the mechanism to overcome the horizon problem as well as generate the primordial perturbations. In this work, we investigate the conservation of perturbations in single-field models of both inflationary and bouncing scenarios, where the quantity, $z = a \, \rm d \phi/{\rm d}\log a$, with $a$ representing the scale factor and $\phi$ denoting the scalar field, decreases with time. We observe that this behaviour occurs during the ultra-slow-roll phase in the context of inflation and the contracting phase in the context of bounce. We show that the conjugate momentum associated with the comoving curvature perturbation during both the ultra-slow-roll phase and the contracting phase of bouncing scenarios is conserved in the super-Hubble limit. We illustrate that, within the framework of inflation, this conservation of momentum allows for the evolution of perturbations across the ultra-slow-roll phase, enabling the calculation of the power spectrum for modes that exit the Hubble radius before the ultra-slow-roll phase begins. Similarly, in the context of a bounce, we can determine the power spectrum after the bounce using this method. We support our approach with both numerical and analytical arguments.
- P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A20 (2016), arXiv:1502.02114 [astro-ph.CO] .
- Y. Akrami et al. (Planck), Astron. Astrophys. 641, A10 (2020), arXiv:1807.06211 [astro-ph.CO] .
- V. F. Mukhanov, Sov. Phys. JETP 67, 1297 (1988), [Zh. Eksp. Teor. Fiz.94N7,1(1988)].
- S. Inoue and J. Yokoyama, Phys. Lett. B 524, 15 (2002), arXiv:hep-ph/0104083 .
- J. Garcia-Bellido and E. Ruiz Morales, Phys. Dark Univ. 18, 47 (2017), arXiv:1702.03901 [astro-ph.CO] .
- C. Germani and T. Prokopec, Phys. Dark Univ. 18, 6 (2017), arXiv:1706.04226 [astro-ph.CO] .
- G. Ballesteros and M. Taoso, Phys. Rev. D 97, 023501 (2018), arXiv:1709.05565 [hep-ph] .
- H. V. Ragavendra and L. Sriramkumar, Galaxies 11, 34 (2023), arXiv:2301.08887 [astro-ph.CO] .
- S. Choudhury and A. Mazumdar, Phys. Lett. B 733, 270 (2014), arXiv:1307.5119 [astro-ph.CO] .
- R. H. Brandenberger and J. Martin, Class. Quant. Grav. 30, 113001 (2013), arXiv:1211.6753 [astro-ph.CO] .
- R. Brandenberger and P. Peter, Found. Phys. 47, 797 (2017), arXiv:1603.05834 [hep-th] .
- D. Wands, Phys. Rev. D60, 023507 (1999), arXiv:gr-qc/9809062 [gr-qc] .
- O. Özsoy and G. Tasinato, JCAP 04, 048 (2020), arXiv:1912.01061 [astro-ph.CO] .
- R. N. Raveendran, Phys. Rev. D 99, 103517 (2019), arXiv:1902.06639 [gr-qc] .
- P. Peter and N. Pinto-Neto, Phys. Rev. D 66, 063509 (2002), arXiv:hep-th/0203013 .
- L. E. Allen and D. Wands, Phys. Rev. D70, 063515 (2004), arXiv:astro-ph/0404441 [astro-ph] .
- J. Martin and P. Peter, Phys. Rev. D 68, 103517 (2003), arXiv:hep-th/0307077 .
- R. H. Brandenberger, (2012), arXiv:1206.4196 [astro-ph.CO] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.