Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Relation between PLS and OLS regression in terms of the eigenvalue distribution of the regressor covariance matrix (2312.01379v1)

Published 3 Dec 2023 in stat.ME, cs.LG, and stat.ML

Abstract: Partial least squares (PLS) is a dimensionality reduction technique introduced in the field of chemometrics and successfully employed in many other areas. The PLS components are obtained by maximizing the covariance between linear combinations of the regressors and of the target variables. In this work, we focus on its application to scalar regression problems. PLS regression consists in finding the least squares predictor that is a linear combination of a subset of the PLS components. Alternatively, PLS regression can be formulated as a least squares problem restricted to a Krylov subspace. This equivalent formulation is employed to analyze the distance between ${\hat{\boldsymbol\beta}\;}{\mathrm{PLS}}{\scriptscriptstyle {(L)}}$, the PLS estimator of the vector of coefficients of the linear regression model based on $L$ PLS components, and $\hat{\boldsymbol \beta}{\mathrm{OLS}}$, the one obtained by ordinary least squares (OLS), as a function of $L$. Specifically, ${\hat{\boldsymbol\beta}\;}{\mathrm{PLS}}{\scriptscriptstyle {(L)}}$ is the vector of coefficients in the aforementioned Krylov subspace that is closest to $\hat{\boldsymbol \beta}{\mathrm{OLS}}$ in terms of the Mahalanobis distance with respect to the covariance matrix of the OLS estimate. We provide a bound on this distance that depends only on the distribution of the eigenvalues of the regressor covariance matrix. Numerical examples on synthetic and real-world data are used to illustrate how the distance between ${\hat{\boldsymbol\beta}\;}{\mathrm{PLS}}{\scriptscriptstyle {(L)}}$ and $\hat{\boldsymbol \beta}{\mathrm{OLS}}$ depends on the number of clusters in which the eigenvalues of the regressor covariance matrix are grouped.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. \APACrefYearMonthDay2009. \BBOQ\APACrefatitlePLS Works PLS works.\BBCQ \APACjournalVolNumPagesJournal of Chemometrics23269–71. {APACrefDOI} 10.1002/cem.1177 \PrintBackRefs\CurrentBib
  2. \APACrefYearMonthDay2009. \BBOQ\APACrefatitle7 - Matrix Calculus 7 - Matrix Calculus.\BBCQ \BIn R. Bronson \BBA G\BPBIB. Costa (\BEDS), \APACrefbtitleMatrix Methods (Third Edition) Matrix Methods (Third Edition) (\BPGS 213–255). \APACaddressPublisherBostonAcademic Press. {APACrefDOI} 10.1016/B978-0-08-092225-6.50013-9 \PrintBackRefs\CurrentBib
  3. \APACinsertmetastardejongSIMPLS1993{APACrefauthors}de Jong, S.  \APACrefYearMonthDay1993. \BBOQ\APACrefatitleSIMPLS: An Alternative Approach to Partial Least Squares Regression SIMPLS: An alternative approach to partial least squares regression.\BBCQ \APACjournalVolNumPagesChemometrics and Intelligent Laboratory Systems183251–263. {APACrefDOI} 10.1016/0169-7439(93)85002-X \PrintBackRefs\CurrentBib
  4. \APACinsertmetastardevoreProbability1987{APACrefauthors}Devore, J.  \APACrefYear1987. \APACrefbtitleProbability and Statistics for Engineering and the Sciences Probability and Statistics for Engineering and the Sciences. \APACaddressPublisherBrooks/Cole Publishing Company. \PrintBackRefs\CurrentBib
  5. \APACinsertmetastareldenPLSLanczos2004{APACrefauthors}Eldén, L.  \APACrefYearMonthDay2004. \BBOQ\APACrefatitlePartial Least-Squares vs. Lanczos Bidiagonalization—I: Analysis of a Projection Method for Multiple Regression Partial least-squares vs. Lanczos bidiagonalization—I: Analysis of a projection method for multiple regression.\BBCQ \APACjournalVolNumPagesComputational Statistics and Data Analysis46111–31. {APACrefDOI} https://doi.org/10.1016/S0167-9473(03)00138-5 \PrintBackRefs\CurrentBib
  6. \APACrefYearMonthDay1993. \BBOQ\APACrefatitleA Statistical View of Some Chemometrics Regression Tools A Statistical View of Some Chemometrics Regression Tools.\BBCQ \APACjournalVolNumPagesTechnometrics352109–135. {APACrefDOI} 10.2307/1269656 \PrintBackRefs\CurrentBib
  7. \APACinsertmetastargeladiNotesHistoryNature1988{APACrefauthors}Geladi, P.  \APACrefYearMonthDay1988. \BBOQ\APACrefatitleNotes on the History and Nature of Partial Least Squares (PLS) Modelling Notes on the history and nature of partial least squares (PLS) modelling.\BBCQ \APACjournalVolNumPagesJournal of Chemometrics24231–246. {APACrefDOI} 10.1002/cem.1180020403 \PrintBackRefs\CurrentBib
  8. \APACrefYearMonthDay1986. \BBOQ\APACrefatitlePartial Least-Squares Regression: A Tutorial Partial least-squares regression: A tutorial.\BBCQ \APACjournalVolNumPagesAnalytica Chimica Acta1851–17. {APACrefDOI} 10.1016/0003-2670(86)80028-9 \PrintBackRefs\CurrentBib
  9. \APACinsertmetastarhellandStructurePLS1988{APACrefauthors}Helland, I\BPBIS.  \APACrefYearMonthDay1988. \BBOQ\APACrefatitleOn the Structure of Partial Least Squares Regression On the structure of partial least squares regression.\BBCQ \APACjournalVolNumPagesCommunications in Statistics - Simulation and Computation172581–607. {APACrefDOI} 10.1080/03610918808812681 \PrintBackRefs\CurrentBib
  10. \APACrefYearMonthDay1952. \BBOQ\APACrefatitleMethods of Conjugate Gradients for Solving Linear Systems Methods of conjugate gradients for solving linear systems.\BBCQ \APACjournalVolNumPagesJournal of research of the National Bureau of Standards49409–435. {APACrefDOI} 10.6028/jres.049.044 \PrintBackRefs\CurrentBib
  11. \APACinsertmetastarhoskuldssonPLSReg1988{APACrefauthors}Höskuldsson, A.  \APACrefYearMonthDay1988. \BBOQ\APACrefatitlePLS Regression Methods PLS regression methods.\BBCQ \APACjournalVolNumPagesJournal of Chemometrics23211–228. {APACrefDOI} https://doi.org/10.1002/cem.1180020306 \PrintBackRefs\CurrentBib
  12. \APACrefYearMonthDay1997. \BBOQ\APACrefatitleSparse Spatial Autoregressions Sparse spatial autoregressions.\BBCQ \APACjournalVolNumPagesStatistics & Probability Letters333291–297. {APACrefDOI} 10.1016/S0167-7152(96)00140-X \PrintBackRefs\CurrentBib
  13. \APACrefYearMonthDay2001. \BBOQ\APACrefatitleSpatiotemporal Analysis of Experimental Differences in Event-Related Potential Data with Partial Least Squares Spatiotemporal analysis of experimental differences in event-related potential data with partial least squares.\BBCQ \APACjournalVolNumPagesPsychophysiology383517–530. {APACrefDOI} 10.1017/s0048577201991681 \PrintBackRefs\CurrentBib
  14. \APACinsertmetastarlyttkensRegressionAspectsCanonical1972{APACrefauthors}Lyttkens, E.  \APACrefYearMonthDay1972. \BBOQ\APACrefatitleRegression Aspects of Canonical Correlation Regression aspects of canonical correlation.\BBCQ \APACjournalVolNumPagesJournal of Multivariate Analysis24418–439. {APACrefDOI} https://doi.org/10.1016/0047-259X(72)90036-X \PrintBackRefs\CurrentBib
  15. \APACinsertmetastarmezzadriHowGenerateRandom2007{APACrefauthors}Mezzadri, F.  \APACrefYearMonthDay2007. \BBOQ\APACrefatitleHow to Generate Random Matrices from the Classical Compact Groups How to generate random matrices from the classical compact groups.\BBCQ \APACjournalVolNumPagesNotices of the American Mathematical Society545592–604. {APACrefDOI} 10.48550/arXiv.math-ph/0609050 \PrintBackRefs\CurrentBib
  16. \APACrefYearMonthDay1985. \BBOQ\APACrefatitleComparison of Prediction Methods for Multicollinear Data Comparison of prediction methods for multicollinear data.\BBCQ \APACjournalVolNumPagesCommunications in Statistics - Simulation and Computation143545–576. {APACrefDOI} 10.1080/03610918508812458 \PrintBackRefs\CurrentBib
  17. \APACrefYearMonthDay2002. \BBOQ\APACrefatitleTumor Classification by Partial Least Squares Using Microarray Gene Expression Data Tumor Classification by Partial Least Squares Using Microarray Gene Expression Data.\BBCQ \APACjournalVolNumPagesBioinformatics (Oxford, England)1839–50. {APACrefDOI} 10.1093/bioinformatics/18.1.39 \PrintBackRefs\CurrentBib
  18. \APACrefYearMonthDay1997. \BBOQ\APACrefatitleMultiway Calibration in 3D QSAR Multiway calibration in 3D QSAR.\BBCQ \APACjournalVolNumPagesJournal of Chemometrics116511–524. {APACrefDOI} 10.1002/(SICI)1099-128X(199711/12)11:6<511::AID-CEM488>3.0.CO;2-W \PrintBackRefs\CurrentBib
  19. \APACrefYear1999. \APACrefbtitleNumerical Optimization Numerical Optimization. \APACaddressPublisherNew YorkSpringer-Verlag. {APACrefDOI} 10.1007/b98874 \PrintBackRefs\CurrentBib
  20. \APACrefYearMonthDay1977. \BBOQ\APACrefatitleNIPALS Path Modelling with Latent Variables NIPALS Path Modelling with Latent Variables.\BBCQ \APACjournalVolNumPagesScandinavian Journal of Educational Research - SCAND J EDUC RES2133–61. {APACrefDOI} 10.1080/0031383770210103 \PrintBackRefs\CurrentBib
  21. \APACrefYearMonthDay2002. \BBOQ\APACrefatitleExploiting the Connection between PLS, Lanczos Methods and Conjugate Gradients: Alternative Proofs of Some Properties of PLS Exploiting the connection between PLS, Lanczos methods and conjugate gradients: Alternative proofs of some properties of PLS.\BBCQ \APACjournalVolNumPagesJournal of Chemometrics16361–367. {APACrefDOI} 10.1002/cem.728 \PrintBackRefs\CurrentBib
  22. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleOverview and Recent Advances in Partial Least Squares Overview and Recent Advances in Partial Least Squares.\BBCQ \APACjournalVolNumPagesLecture Notes in Computer Science394034–51. {APACrefDOI} 10.1007/11752790_2 \PrintBackRefs\CurrentBib
  23. \APACrefYearMonthDay2015. \BBOQ\APACrefatitleSkewness, Kurtosis and Newton’s Inequality Skewness, kurtosis and Newton’s inequality.\BBCQ \APACjournalVolNumPagesRocky Mountain Journal of Mathematics4551639–1643. {APACrefDOI} 10.1216/RMJ-2015-45-5-1639 \PrintBackRefs\CurrentBib
  24. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleOn the PLS Algorithm for Multiple Regression (PLS1) On the PLS Algorithm for Multiple Regression (PLS1).\BBCQ \BIn H. Abdi, V. Esposito Vinzi, G. Russolillo, G. Saporta\BCBL \BBA L. Trinchera (\BEDS), \APACrefbtitleThe Multiple Facets of Partial Least Squares and Related Methods The Multiple Facets of Partial Least Squares and Related Methods (\BPGS 17–28). \APACaddressPublisherChamSpringer International Publishing. {APACrefDOI} 10.1007/978-3-319-40643-5_2 \PrintBackRefs\CurrentBib
  25. \APACinsertmetastarwegelinSurvey2000{APACrefauthors}Wegelin, J.  \APACrefYearMonthDay2000. \BBOQ\APACrefatitleA Survey of Partial Least Squares (PLS) Methods, with Emphasis on the Two-Block Case A Survey of Partial Least Squares (PLS) Methods, with Emphasis on the Two-Block Case.\BBCQ \BIn \APACrefbtitleTechnical Report. Technical Report. \APACaddressPublisherDepartment of Statistics, University of Washington, Seattle. \PrintBackRefs\CurrentBib
  26. \APACinsertmetastarwoldModelConstructionEvaluation1980{APACrefauthors}Wold, H.  \APACrefYearMonthDay1980. \BBOQ\APACrefatitleModel Construction and Evaluation When Theoretical Knowledge Is Scarce Model Construction and Evaluation When Theoretical Knowledge Is Scarce.\BBCQ \BIn \APACrefbtitleEvaluation of Econometric Models Evaluation of Econometric Models (\BPGS 47–74). \APACaddressPublisherAcademic Press. \PrintBackRefs\CurrentBib
  27. \APACrefYearMonthDay1984. \BBOQ\APACrefatitleThe Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses.\BBCQ \APACjournalVolNumPagesSIAM Journal on Scientific and Statistical Computing53735–743. {APACrefDOI} 10.1137/0905052 \PrintBackRefs\CurrentBib
  28. \APACrefYearMonthDay2001. \BBOQ\APACrefatitlePLS-regression: A Basic Tool of Chemometrics PLS-regression: A basic tool of chemometrics.\BBCQ \APACjournalVolNumPagesChemometrics and Intelligent Laboratory Systems582109–130. {APACrefDOI} 10.1016/S0169-7439(01)00155-1 \PrintBackRefs\CurrentBib
  29. \APACinsertmetastarworsleyOverview1997{APACrefauthors}Worsley, K\BPBIJ.  \APACrefYearMonthDay1997. \BBOQ\APACrefatitleAn Overview and Some New Developments in the Statistical Analysis of PET and fMRI Data An overview and some new developments in the statistical analysis of PET and fMRI data.\BBCQ \APACjournalVolNumPagesHuman Brain Mapping54254–258. {APACrefDOI} 10.1002/(SICI)1097-0193(1997)5:4<254::AID-HBM9>3.0.CO;2-2 \PrintBackRefs\CurrentBib

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube