A continuous-wave and pulsed X-band electron spin resonance spectrometer operating in ultra-high vacuum for the study of low dimensional spin ensembles (2312.00459v2)
Abstract: We report the development of a continuous-wave and pulsed X-band electron spin resonance (ESR) spectrometer for the study of spins on ordered surfaces down to cryogenic temperatures. The spectrometer operates in ultra-high vacuum and utilizes a half-wavelength microstrip line resonator realized using epitaxially grown copper films on single crystal Al$_2$O$_3$ substrates. The one-dimensional microstrip line resonator exhibits a quality factor of more than 200 at room temperature, close to the upper limit determined by radiation losses. The surface characterizations of the copper strip of the resonator by atomic force microscope, low-energy electron diffraction, and scanning tunneling microscope show that the surface is atomically clean, flat, and single crystalline. Measuring the ESR spectrum at 15 K from a few nm thick molecular film of YPc$_2$, we find a continuous-wave ESR sensitivity of $2.6 \cdot 10{11}~\text{spins}/\text{G} \cdot \text{Hz}{1/2}$ indicating that a signal-to-noise ratio of $3.9~\text{G} \cdot \text{Hz}{1/2}$ is expected from a monolayer of YPc$_2$ molecules. Advanced pulsed ESR experimental capabilities including dynamical decoupling and electron-nuclear double resonance are demonstrated using free radicals diluted in a glassy matrix.
- Y. Chen, Y. Bae, and A. J. Heinrich, Adv. Mater. 35, 2107534 (2023).
- J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd ed. (Wiley-Interscience, 2007).
- B. P. Lemke and D. Haneman, Phys. Rev. Lett. 35, 1379 (1975).
- M. Farle, M. Zomack, and K. Baberschke, Surf. Sci. 160, 205 (1985).
- M. Zomack and K. Baberschke, Surf. Sci. 178, 618 (1986).
- M. Zomack and K. Baberschke, Phys. Rev. B 36, 5756 (1987).
- W. Futako, N. Mizuochi, and S. Yamasaki, Phys. Rev. Lett. 92, 105505 (2004).
- Y. Artzi, Y. Twig, and A. Blank, Appl. Phys. Lett. 106, 084104 (2015).
- R. Narkowicz, D. Suter, and R. Stonies, J. Magn. Reson. 175, 275 (2005).
- A. C. Torrezan, T. P. M. Alegre, and G. Medeiros-Ribeiro, Rev. Sci. Instrum. 80, 075111 (2009).
- H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954).
- S. Meiboom and D. Gill, Rev. Sci. Instrum. 29, 688 (1958).
- A. Schweiger and G. Jeschke, Principles of pulse electron paramagnetic resonance, 1st ed. (Oxford University Press, 2001).
- The MathWorks Inc., “Matlab version: 9.13.0 (r2022b),” https://www.mathworks.com (2022).
- D. M. Pozar, Microwave Engineering, 4th ed. (John Wiley & Sons, Inc., 2011).
- G. Katz, Appl. Phys. Lett. 12, 161 (1968).
- J. Park, Optimization of the surface morphology of copper/sapphire microstrip resonators for the detection of molecular spin qubit ultrathin films, Master’s thesis, Ewha Womans University (2022).
- R. Rizzato and M. Bennati, Phys. Chem. Chem. Phys. 16, 7681 (2014).
- F. H. Cho, V. Stepanov, and S. Takahashi, Rev. Sci. Instrum. 85, 075110 (2014).
- F. H. Cho, V. Stepanov, C. Abeywardana, and S. Takahashi, “230/115 GHz electron paramagnetic resonance/double electron-electron resonance spectroscopy,” in Meth. Enzymol., Vol. 563 (Elsevier, 2015) p. 95.
- R. Weber, ELEXSYS E 580 Pulse EPR Spectrometer User Manual, Bruker BioSpin Corporation (2001).
- R. Weber, User Service Training Course, Bruker BioSpin Corporation (2002).
- G. W. Morley, L.-C. Brunel, and J. van Tol, Rev. Sci. Instrum. 79, 064703 (2008).
- T. W. Borneman and D. G. Cory, J. Magn. Reson. 207, 220 (2010).
- E. Belohoubek and E. Denlinger, IEEE Transactions on Microwave Theory and Techniques 23, 522 (1975).
- E. Denlinger, IEEE Transactions on Microwave Theory and Techniques 28, 513 (1980).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.