On quantum Poisson-Lie T-duality of WZNW models (2311.18530v3)
Abstract: We study Poisson-Lie T-duality of the Wess-Zumino-Novikov-Witten (WZNW) models which are obtained from a class of Drinfel'd doubles and its generalization. In this case, the resultant WZNW models are known to be classically self-dual under Poisson-Lie T-duality. We describe an explicit construction of the associated currents, and discuss the conformal invariance under this duality. In a concrete example of the SU(2) WZNW model, we find that the self-duality is represented as a chiral automorphism of the $\widehat{\mathfrak{su}}(2)$ affine Lie algebra, though the transformation of the currents is non-local and non-linear. This classical automorphism can be promoted to the quantum one through the parafermionic formulation of $\widehat{\mathfrak{su}}(2)$, which in turn induces an isomorphism of the WZNW model. We thus find a full quantum equivalence of the dual pair under Poisson-Lie T-duality. The isomorphism is represented by a sign-change of a chiral boson or the order-disorder duality of the parafermionic conformal field theory as in Abelian T-duality on tori or in the mirror symmetry of the Gepner model.
- K. Kikkawa and M. Yamasaki, “Casimir Effects in Superstring Theories,” Phys. Lett. B 149 (1984), 357-360.
- N. Sakai and I. Senda, “Vacuum Energies of String Compactified on Torus,” Prog. Theor. Phys. 75 (1986), 692 [erratum: Prog. Theor. Phys. 77 (1987), 773].
- T. H. Buscher, “A Symmetry of the String Background Field Equations,” Phys. Lett. B 194 (1987), 59-62.
- M. J. Duff, “Duality Rotations in String Theory,” Nucl. Phys. B 335 (1990), 610.
- A. Giveon and M. Rocek, “Generalized duality in curved string backgrounds,” Nucl. Phys. B 380 (1992), 128-146 [arXiv:hep-th/9112070 [hep-th]].
- M. Rocek and E. P. Verlinde, “Duality, quotients, and currents,” Nucl. Phys. B 373 (1992), 630-646 [arXiv:hep-th/9110053 [hep-th]].
- E. Alvarez, L. Alvarez-Gaume, J. L. F. Barbon and Y. Lozano, “Some global aspects of duality in string theory,” Nucl. Phys. B 415 (1994), 71-100 [arXiv:hep-th/9309039 [hep-th]].
- E. Alvarez, L. Alvarez-Gaume and Y. Lozano, “A Canonical approach to duality transformations,” Phys. Lett. B 336 (1994), 183-189 [arXiv:hep-th/9406206 [hep-th]].
- X. C. de la Ossa and F. Quevedo, “Duality symmetries from nonAbelian isometries in string theory,” Nucl. Phys. B 403 (1993), 377-394 [arXiv:hep-th/9210021 [hep-th]].
- A. Giveon and M. Rocek, “On nonAbelian duality,” Nucl. Phys. B 421 (1994), 173-190 [arXiv:hep-th/9308154 [hep-th]].
- E. Alvarez, L. Alvarez-Gaume and Y. Lozano, “On nonAbelian duality,” Nucl. Phys. B 424 (1994), 155-183 [arXiv:hep-th/9403155 [hep-th]].
- C. Klimcik and P. Severa, “Dual nonAbelian duality and the Drinfeld double,” Phys. Lett. B 351 (1995), 455-462 [arXiv:hep-th/9502122 [hep-th]].
- C. Klimcik, “Poisson-Lie T duality,” Nucl. Phys. B Proc. Suppl. 46 (1996), 116-121 [arXiv:hep-th/9509095 [hep-th]].
- C. Klimcik and P. Severa, “Poisson-Lie T duality and loop groups of Drinfeld doubles,” Phys. Lett. B 372 (1996), 65-71 [arXiv:hep-th/9512040 [hep-th]].
- K. Sfetsos, “Canonical equivalence of nonisometric sigma models and Poisson-Lie T duality,” Nucl. Phys. B 517 (1998), 549-566 [arXiv:hep-th/9710163 [hep-th]].
- A. Bossard and N. Mohammedi, “Poisson-Lie duality in the string effective action,” Nucl. Phys. B 619 (2001), 128-154 [arXiv:hep-th/0106211 [hep-th]].
- W. Siegel, “Superspace duality in low-energy superstrings,” Phys. Rev. D 48 (1993), 2826-2837 [arXiv:hep-th/9305073 [hep-th]].
- C. Hull and B. Zwiebach, “Double Field Theory,” JHEP 09 (2009), 099 [arXiv:0904.4664 [hep-th]].
- O. Hohm, C. Hull and B. Zwiebach, “Generalized metric formulation of double field theory,” JHEP 08 (2010), 008 [arXiv:1006.4823 [hep-th]].
- D. Geissbuhler, D. Marques, C. Nunez and V. Penas, “Exploring Double Field Theory,” JHEP 06 (2013), 101 [arXiv:1304.1472 [hep-th]].
- F. Hassler, “Poisson-Lie T-duality in Double Field Theory,” Phys. Lett. B 807 (2020), 135455 [arXiv:1707.08624 [hep-th]].
- P. Ševera and F. Valach, “Courant Algebroids, Poisson–Lie T-Duality, and Type II Supergravities,” Commun. Math. Phys. 375 (2020) no.1, 307-344 [arXiv:1810.07763 [math.DG]].
- S. Demulder, F. Hassler and D. C. Thompson, “Doubled aspects of generalised dualities and integrable deformations,” JHEP 02 (2019), 189 [arXiv:1810.11446 [hep-th]].
- Y. Sakatani, “Type II DFT solutions from Poisson-Lie T-duality/plurality,” [arXiv:1903.12175 [hep-th]].
- G. Arutyunov, S. Frolov, B. Hoare, R. Roiban and A. A. Tseytlin, “Scale invariance of the η𝜂\etaitalic_η-deformed AdS5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT superstring, T-duality and modified type II equations,” Nucl. Phys. B 903 (2016), 262-303 [arXiv:1511.05795 [hep-th]].
- L. Wulff and A. A. Tseytlin, “Kappa-symmetry of superstring sigma model and generalized 10d supergravity equations,” JHEP 06 (2016), 174 [arXiv:1605.04884 [hep-th]].
- M. Gasperini, R. Ricci and G. Veneziano, “A Problem with nonAbelian duality?,” Phys. Lett. B 319 (1993), 438-444 [arXiv:hep-th/9308112 [hep-th]].
- J. i. Sakamoto, Y. Sakatani and K. Yoshida, “Weyl invariance for generalized supergravity backgrounds from the doubled formalism,” PTEP 2017 (2017) no.5, 053B07 [arXiv:1703.09213 [hep-th]].
- L. Wulff, “Trivial solutions of generalized supergravity vs non-abelian T-duality anomaly,” Phys. Lett. B 781 (2018), 417-422 [arXiv:1803.07391 [hep-th]].
- J. Balog, P. Forgacs, N. Mohammedi, L. Palla and J. Schnittger, “On quantum T duality in sigma models,” Nucl. Phys. B 535 (1998), 461-482 [arXiv:hep-th/9806068 [hep-th]].
- K. Sfetsos, “Duality invariant class of two-dimensional field theories,” Nucl. Phys. B 561 (1999), 316-340 [arXiv:hep-th/9904188 [hep-th]].
- K. Sfetsos and K. Siampos, “Quantum equivalence in Poisson-Lie T-duality,” JHEP 06 (2009), 082 [arXiv:0904.4248 [hep-th]].
- K. Sfetsos, K. Siampos and D. C. Thompson, “Renormalization of Lorentz non-invariant actions and manifest T-duality,” Nucl. Phys. B 827 (2010), 545-564 [arXiv:0910.1345 [hep-th]].
- F. Hassler and T. Rochais, “α′superscript𝛼′\alpha^{\prime}italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT-Corrected Poisson-Lie T-Duality,” Fortsch. Phys. 68 (2020) no.9, 2000063 [arXiv:2007.07897 [hep-th]].
- R. Borsato and L. Wulff, “Quantum Correction to Generalized T𝑇Titalic_T Dualities,” Phys. Rev. Lett. 125 (2020) no.20, 201603 [arXiv:2007.07902 [hep-th]].
- T. Codina and D. Marques, “Generalized Dualities and Higher Derivatives,” JHEP 10 (2020), 002 [arXiv:2007.09494 [hep-th]].
- A. Y. Alekseev, C. Klimcik and A. A. Tseytlin, “Quantum Poisson-Lie T duality and WZNW model,” Nucl. Phys. B 458 (1996), 430-444 [arXiv:hep-th/9509123 [hep-th]].
- E. Tyurin and R. von Unge, “Poisson-lie T duality: The Path integral derivation,” Phys. Lett. B 382 (1996), 233-240 [arXiv:hep-th/9512025 [hep-th]].
- R. Von Unge, “Poisson Lie T plurality,” JHEP 07 (2002), 014 [arXiv:hep-th/0205245 [hep-th]].
- C. Klimcik and P. Severa, “Open strings and D-branes in WZNW model,” Nucl. Phys. B 488 (1997), 653-676 [arXiv:hep-th/9609112 [hep-th]].
- V. A. Fateev and A. B. Zamolodchikov, “Parafermionic Currents in the Two-Dimensional Conformal Quantum Field Theory and Selfdual Critical Points in Z(n) Invariant Statistical Systems,” Sov. Phys. JETP 62 (1985), 215-225 LANDAU-1985-9.
- D. Gepner and Z. a. Qiu, “Modular Invariant Partition Functions for Parafermionic Field Theories,” Nucl. Phys. B 285 (1987), 423.
- B. R. Greene and M. R. Plesser, “Duality in Calabi-Yau Moduli Space,” Nucl. Phys. B 338 (1990), 15-37.
- B. R. Greene, “String theory on Calabi-Yau manifolds,” [arXiv:hep-th/9702155 [hep-th]].
- D. Gepner, “Space-Time Supersymmetry in Compactified String Theory and Superconformal Models,” Nucl. Phys. B 296 (1988), 757.
- M. R. Gaberdiel, “Abelian duality in WZW models,” Nucl. Phys. B 471 (1996), 217-232 [arXiv:hep-th/9601016 [hep-th]].
- J. M. Maldacena, G. W. Moore and N. Seiberg, “Geometrical interpretation of D-branes in gauged WZW models,” JHEP 07 (2001), 046 [arXiv:hep-th/0105038 [hep-th]].
- E. Kiritsis, “Exact duality symmetries in CFT and string theory,” Nucl. Phys. B 405 (1993), 109-142 [arXiv:hep-th/9302033 [hep-th]].
- A. Eghbali and A. Rezaei-Aghdam, “Poisson Lie symmetry and D-branes in WZW model on the Heisenberg Lie group H4subscript𝐻4H_{4}italic_H start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT,” Nucl. Phys. B 899 (2015), 165-179 [arXiv:1506.06233 [hep-th]].
- A. Eghbali, “Exact conformal field theories from mutually T-dualizable σ𝜎\sigmaitalic_σ-models,” Phys. Rev. D 99 (2019) no.2, 026001 [arXiv:1812.07664 [hep-th]].
- Y. Sakatani, “Poisson–Lie T-plurality for WZW backgrounds,” PTEP 2021 (2021) no.10, 103B03 [arXiv:2102.01069 [hep-th]].
- C. M. Hull and R. A. Reid-Edwards, “Non-geometric backgrounds, doubled geometry and generalised T-duality,” JHEP 09 (2009), 014 [arXiv:0902.4032 [hep-th]].
- R. A. Reid-Edwards, “Bi-Algebras, Generalised Geometry and T-Duality,” [arXiv:1001.2479 [hep-th]].
- C. M. Hull, “A Geometry for non-geometric string backgrounds,” JHEP 10 (2005), 065 [arXiv:hep-th/0406102 [hep-th]].
- R. Borsato, S. Driezen and F. Hassler, “An algebraic classification of solution generating techniques,” Phys. Lett. B 823 (2021), 136771 [arXiv:2109.06185 [hep-th]].
- C. Klimcik, “η𝜂\etaitalic_η and λ𝜆\lambdaitalic_λ deformations as E -models,” Nucl. Phys. B 900 (2015), 259-272 [arXiv:1508.05832 [hep-th]].
- L. Snobl and L. Hlavaty, “Classification of six-dimensional real Drinfeld doubles,” Int. J. Mod. Phys. A 17 (2002), 4043-4068 [arXiv:math/0202210 [math.QA]].
- R. Blumenhagen, P. du Bosque, F. Hassler and D. Lust, “Generalized Metric Formulation of Double Field Theory on Group Manifolds,” JHEP 08 (2015), 056 [arXiv:1502.02428 [hep-th]].
- S. Elitzur, A. Giveon, E. Rabinovici, A. Schwimmer and G. Veneziano, “Remarks on nonAbelian duality,” Nucl. Phys. B 435 (1995), 147-171 [arXiv:hep-th/9409011 [hep-th]].
- J. J. Fernandez-Melgarejo, J. i. Sakamoto, Y. Sakatani and K. Yoshida, “T𝑇Titalic_T-folds from Yang-Baxter deformations,” JHEP 12 (2017), 108 [arXiv:1710.06849 [hep-th]].
- J. J. Fernández-Melgarejo, J. I. Sakamoto, Y. Sakatani and K. Yoshida, “Weyl invariance of string theories in generalized supergravity backgrounds,” Phys. Rev. Lett. 122 (2019) no.11, 111602 [arXiv:1811.10600 [hep-th]].
- J. I. Sakamoto and Y. Sakatani, “Local β𝛽\betaitalic_β-deformations and Yang-Baxter sigma model,” JHEP 06 (2018), 147 [arXiv:1803.05903 [hep-th]].
- G. Dibitetto, J. J. Fernandez-Melgarejo, D. Marques and D. Roest, “Duality orbits of non-geometric fluxes,” Fortsch. Phys. 60 (2012), 1123-1149 [arXiv:1203.6562 [hep-th]].
- V. G. Kac and D. H. Peterson, “On geometric invariant theory for infinite-dimensional groups,” in Lecture Notes in Math.1271 (1987)109. Wiley-Interscience, 1995.
- R. V. Moody and A. Pianzola, “Lie Algebras with Triangular Decompositions,” Wiley-Interscience, 1995.
- A. B. Zamolodchikov and V. A. Fateev, “Disorder Fields in Two-Dimensional Conformal Quantum Field Theory and N=2 Extended Supersymmetry,” Sov. Phys. JETP 63 (1986), 913-919.
- S. E. Parkhomenko, “On the quantum Poisson-Lie T duality and mirror symmetry,” J. Exp. Theor. Phys. 89 (1999), 5-12 [arXiv:hep-th/9812048 [hep-th]].
- S. K. Yang, “Marginal Deformation of Minimal N=2𝑁2N=2italic_N = 2 Superconformal Field Theories and the Witten Index,” Phys. Lett. B 209 (1988), 242-246.
- C. Klimcik and S. Parkhomenko, “Monodromic strings,” [arXiv:hep-th/0010084 [hep-th]].
- A. Giveon, M. Porrati and E. Rabinovici, “Target space duality in string theory,” Phys. Rept. 244 (1994), 77-202 [arXiv:hep-th/9401139 [hep-th]].
- D. Gepner, “New Conformal Field Theories Associated with Lie Algebras and their Partition Functions,” Nucl. Phys. B 290 (1987), 10-24.
- K. Lee and J. H. Park, “Covariant action for a string in ”doubled yet gauged” spacetime,” Nucl. Phys. B 880 (2014), 134-154 [arXiv:1307.8377 [hep-th]].
- K. Morand and J. H. Park, “Classification of non-Riemannian doubled-yet-gauged spacetime,” Eur. Phys. J. C 77 (2017) no.10, 685 [erratum: Eur. Phys. J. C 78 (2018) no.11, 901] [arXiv:1707.03713 [hep-th]].
- J. H. Park and S. Sugimoto, “String Theory and non-Riemannian Geometry,” Phys. Rev. Lett. 125 (2020) no.21, 211601 [arXiv:2008.03084 [hep-th]].
- Y. Satoh, Y. Sugawara and T. Wada, “Non-supersymmetric Asymmetric Orbifolds with Vanishing Cosmological Constant,” JHEP 02 (2016), 184 [arXiv:1512.05155 [hep-th]].
- Y. Satoh and Y. Sugawara, “Lie algebra lattices and strings on T-folds,” JHEP 02 (2017), 024 [arXiv:1611.08076 [hep-th]].
- Y. Satoh and Y. Sugawara, “Interactions of strings on a T-fold,” JHEP 06 (2022), 121 [arXiv:2203.05841 [hep-th]].
- S. Lacroix, “On a class of conformal ℰℰ\mathcal{E}caligraphic_E-models and their chiral Poisson algebras,” JHEP 06 (2023), 045 [arXiv:2304.04790 [hep-th]].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.