Papers
Topics
Authors
Recent
2000 character limit reached

Integrable Deformations from Twistor Space

Published 29 Nov 2023 in hep-th | (2311.17551v2)

Abstract: Integrable field theories in two dimensions are known to originate as defect theories of 4d Chern-Simons and as symmetry reductions of the 4d anti-self-dual Yang-Mills equations. Based on ideas of Costello, it has been proposed in work of Bittleston and Skinner that these two approaches can be unified starting from holomorphic Chern-Simons in 6 dimensions. We provide the first complete description of this diamond of integrable theories for a family of deformed sigma models, going beyond the Dirichlet boundary conditions that have been considered thus far. Starting from 6d holomorphic Chern-Simons theory on twistor space with a particular meromorphic 3-form $\Omega$, we construct the defect theory to find a novel 4d integrable field theory, whose equations of motion can be recast as the 4d anti-self-dual Yang-Mills equations. Symmetry reducing, we find a multi-parameter 2d integrable model, which specialises to the $\lambda$-deformation at a certain point in parameter space. The same model is recovered by first symmetry reducing, to give 4d Chern-Simons with generalised boundary conditions, and then constructing the defect theory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.