Hamiltonian analysis of metric-affine-$R^2$ theory (2311.17459v2)
Abstract: Determining the number of propagating degrees of freedom in metric-affine theories of gravity requires the use of Hamiltonian constraint analysis, except in some subclasses of theories. We develop the technicalities necessary for such analyses and apply them to the Weyl-invariant and projective-invariant case of metric-affine-$R2$ theory that is known to propagate just the graviton. This serves as a check of the formalism and a case study where we introduce appropriate ADM variables for the distortion 3-tensor tensor and its time derivatives, that will be useful when analyzing more general metric-affine theories where the physical spectrum is not known.
- F. W. Hehl, J. D. McCrea, E. W. Mielke and Y. Ne’eman, “Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance,” Phys. Rept. 258 (1995), 1-171 [arXiv:gr-qc/9402012 [gr-qc]].
- M. Ferraris, M. Francaviglia and C. Reina, “Variational formulation of general relativity from 1915 to 1925 “Palatini’s method” discovered by Einstein in 1925,” Gen. Rel. Grav. 14 (1982) 243
- Q. Exirifard and M. M. Sheikh-Jabbari, “Lovelock gravity at the crossroads of Palatini and metric formulations,” Phys. Lett. B 661 (2008), 158-161 [arXiv:0705.1879 [hep-th]].
- A. Iglesias, N. Kaloper, A. Padilla and M. Park, “How (Not) to Palatini,” Phys. Rev. D 76 (2007), 104001 [arXiv:0708.1163 [astro-ph]].
- M. Borunda, B. Janssen and M. Bastero-Gil, “Palatini versus metric formulation in higher curvature gravity,” JCAP 0811 (2008) 008 [arXiv:0804.4440 [hep-th]].
- N. Kiriushcheva and S. V. Kuzmin, “The Hamiltonian of Einstein affine-metric formulation of General Relativity,” Eur. Phys. J. C 70 (2010), 389-422 [arXiv:0912.3396 [gr-qc]].
- N. Dadhich and J. M. Pons, “On the equivalence of the Einstein-Hilbert and the Einstein-Palatini formulations of general relativity for an arbitrary connection,” Gen. Rel. Grav. 44 (2012) 2337 [arXiv:1010.0869 [gr-qc]].
- A. Escalante and O. R. Tzompantzi, “Hamiltonian dynamics and gauge symmetry for three-dimensional Palatini theory with cosmological constant,” JHEP 05 (2014), 073 [arXiv:1310.5952 [math-ph]].
- A. De Felice and S. Tsujikawa, “f(R) theories,” Living Rev. Rel. 13 (2010), 3 [arXiv:1002.4928 [gr-qc]].
- S. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models,” Phys. Rept. 505 (2011), 59-144 [arXiv:1011.0544 [gr-qc]].
- M. Ferraris, M. Francaviglia and I. Volovich, “The Universality of vacuum Einstein equations with cosmological constant,” Class. Quant. Grav. 11 (1994), 1505-1517 [arXiv:gr-qc/9303007 [gr-qc]].
- T. P. Sotiriou, “f(R) gravity, torsion and non-metricity,” Class. Quant. Grav. 26 (2009), 152001 [arXiv:0904.2774 [gr-qc]].
- J. Beltrán Jiménez, L. Heisenberg and T. S. Koivisto, “The Geometrical Trinity of Gravity,” Universe 5 (2019) no.7, 173 [arXiv:1903.06830 [hep-th]].
- S. Bahamonde, K. F. Dialektopoulos, C. Escamilla-Rivera, G. Farrugia, V. Gakis, M. Hendry, M. Hohmann, J. Levi Said, J. Mifsud and E. Di Valentino, “Teleparallel gravity: from theory to cosmology,” Rept. Prog. Phys. 86 (2023) no.2, 026901 [arXiv:2106.13793 [gr-qc]].
- Y. N. Obukhov, E. J. Vlachynsky, W. Esser and F. W. Hehl, “Effective Einstein theory from metric affine gravity models via irreducible decompositions,” Phys. Rev. D 56 (1997), 7769-7778
- T. P. Sotiriou and V. Faraoni, “f(R) Theories Of Gravity,” Rev. Mod. Phys. 82 (2010), 451-497 [arXiv:0805.1726 [gr-qc]].
- G. J. Olmo, H. Sanchis-Alepuz and S. Tripathi, “Dynamical Aspects of Generalized Palatini Theories of Gravity,” Phys. Rev. D 80 (2009), 024013 [arXiv:0907.2787 [gr-qc]].
- V. Vitagliano, T. P. Sotiriou and S. Liberati, “The dynamics of generalized Palatini Theories of Gravity,” Phys. Rev. D 82 (2010), 084007 [arXiv:1007.3937 [gr-qc]].
- V. Vitagliano, T. P. Sotiriou and S. Liberati, “The dynamics of metric-affine gravity,” Annals Phys. 326 (2011), 1259-1273 [erratum: Annals Phys. 329 (2013), 186-187] [arXiv:1008.0171 [gr-qc]].
- V. Vitagliano, “The role of nonmetricity in metric-affine theories of gravity,” Class. Quant. Grav. 31 (2014) no.4, 045006 [arXiv:1308.1642 [gr-qc]].
- J. Beltran Jimenez and T. S. Koivisto, “Extended Gauss-Bonnet gravities in Weyl geometry,” Class. Quant. Grav. 31 (2014), 135002 [arXiv:1402.1846 [gr-qc]].
- J. Beltrán Jiménez and A. Delhom, “Ghosts in metric-affine higher order curvature gravity,” Eur. Phys. J. C 79 (2019) no.8, 656 [arXiv:1901.08988 [gr-qc]].
- C. Bejarano, A. Delhom, A. Jiménez-Cano, G. J. Olmo and D. Rubiera-Garcia, “Geometric inequivalence of metric and Palatini formulations of General Relativity,” Phys. Lett. B 802 (2020), 135275 [arXiv:1907.04137 [gr-qc]].
- J. Beltrán Jiménez and A. Delhom, “Instabilities in metric-affine theories of gravity with higher order curvature terms,” Eur. Phys. J. C 80 (2020) no.6, 585 [arXiv:2004.11357 [gr-qc]].
- J. Beltrán Jiménez, D. De Andrés and A. Delhom, “Anisotropic deformations in a class of projectively-invariant metric-affine theories of gravity,” Class. Quant. Grav. 37 (2020) no.22, 225013 [arXiv:2006.07406 [gr-qc]].
- H. J. Yo and J. M. Nester, “Hamiltonian analysis of Poincare gauge theory scalar modes,” Int. J. Mod. Phys. D 8 (1999), 459-479 [arXiv:gr-qc/9902032 [gr-qc]].
- M. Blagojević, “Hamiltonian structure and gauge symmetries of Poincare gauge theory,” Annalen Phys. 10 (2001), 367-391 [arXiv:hep-th/0006031 [hep-th]].
- H. J. Yo and J. M. Nester, “Hamiltonian analysis of Poincare gauge theory: Higher spin modes,” Int. J. Mod. Phys. D 11 (2002), 747-780 [arXiv:gr-qc/0112030 [gr-qc]].
- M. Blagojević and B. Cvetković, “General Poincaré gauge theory: Hamiltonian structure and particle spectrum,” Phys. Rev. D 98 (2018), 024014 [arXiv:1804.05556 [gr-qc]].
- Y. C. Lin, M. P. Hobson and A. N. Lasenby, “Ghost and tachyon free Poincaré gauge theories: A systematic approach,” Phys. Rev. D 99 (2019) no.6, 064001 [arXiv:1812.02675 [gr-qc]].
- Y. C. Lin, M. P. Hobson and A. N. Lasenby, “Power-counting renormalizable, ghost-and-tachyon-free Poincaré gauge theories,” Phys. Rev. D 101 (2020) no.6, 064038 [arXiv:1910.14197 [gr-qc]].
- W. E. V. Barker, “Supercomputers against strong coupling in gravity with curvature and torsion,” Eur. Phys. J. C 83 (2023) no.3, 228 [arXiv:2206.00658 [gr-qc]].
- M. Blagojevic and I. A. Nikolic, “Hamiltonian structure of the teleparallel formulation of GR,” Phys. Rev. D 62 (2000), 024021 [arXiv:hep-th/0002022 [hep-th]].
- M. Li, R. X. Miao and Y. G. Miao, “Degrees of freedom of f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity,” JHEP 07 (2011), 108 [arXiv:1105.5934 [hep-th]].
- R. Ferraro and M. J. Guzmán, “Hamiltonian formalism for f(T) gravity,” Phys. Rev. D 97 (2018) no.10, 104028 [arXiv:1802.02130 [gr-qc]].
- M. Blagojević and J. M. Nester, “Local symmetries and physical degrees of freedom in f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity: a Dirac Hamiltonian constraint analysis,” Phys. Rev. D 102 (2020) no.6, 064025 [arXiv:2006.15303 [gr-qc]].
- K. Hu, T. Katsuragawa and T. Qiu, “ADM formulation and Hamiltonian analysis of f(Q) gravity,” Phys. Rev. D 106 (2022) no.4, 044025 [arXiv:2204.12826 [gr-qc]].
- F. D’Ambrosio, L. Heisenberg and S. Zentarra, “Hamiltonian Analysis of f(ℚ)𝑓ℚf(\mathbb{Q})italic_f ( blackboard_Q ) Gravity and the Failure of the Dirac–Bergmann Algorithm for Teleparallel Theories of Gravity,” Fortsch. Phys. 71 (2023) no.12, 2300185 doi:10.1002/prop.202300185 [arXiv:2308.02250 [gr-qc]].
- K. Tomonari and S. Bahamonde, “Dirac-Bergmann analysis and Degrees of Freedom of Coincident f(Q)𝑓𝑄f(Q)italic_f ( italic_Q )-gravity,” [arXiv:2308.06469 [gr-qc]].
- D. A. Gomes, J. B. Jiménez, A. J. Cano and T. S. Koivisto, “On the pathological character of modifications of Coincident General Relativity: Cosmological strong coupling and ghosts in f(ℚ)𝑓ℚf(\mathbb{Q})italic_f ( blackboard_Q ) theories,” [arXiv:2311.04201 [gr-qc]].
- M. J. Guzman, “The Hamiltonian constraint in the symmetric teleparallel equivalent of general relativity,” [arXiv:2311.01424 [gr-qc]].
- B. Julia and S. Silva, “Currents and superpotentials in classical gauge invariant theories. 1. Local results with applications to perfect fluids and general relativity,” Class. Quant. Grav. 15 (1998), 2173-2215 [arXiv:gr-qc/9804029 [gr-qc]].
- R. Percacci and E. Sezgin, “New class of ghost- and tachyon-free metric affine gravities,” Phys. Rev. D 101 (2020) no.8, 084040 [arXiv:1912.01023 [hep-th]].
- V. I. Afonso, C. Bejarano, J. Beltran Jimenez, G. J. Olmo and E. Orazi, “The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields,” Class. Quant. Grav. 34 (2017) no.23, 235003 [arXiv:1705.03806 [gr-qc]].
- K. Aoki and K. Shimada, “Scalar-metric-affine theories: Can we get ghost-free theories from symmetry?,” Phys. Rev. D 100 (2019) no.4, 044037 [arXiv:1904.10175 [hep-th]].
- K. S. Stelle, “Classical Gravity with Higher Derivatives,” Gen. Rel. Grav. 9 (1978), 353-371
- K. S. Stelle, “Renormalization of Higher Derivative Quantum Gravity,” Phys. Rev. D 16 (1977), 953-969
- D. M. Ghilencea, “Palatini quadratic gravity: spontaneous breaking of gauged scale symmetry and inflation,” Eur. Phys. J. C 80 no.12, 1147 [arXiv:2003.08516 [hep-th]].
- D. M. Ghilencea, “Non-metric geometry as the origin of mass in gauge theories of scale invariance,” Eur. Phys. J. C 83 (2023) no.2, 176 [arXiv:2203.05381 [hep-th]].
- A. Baldazzi, O. Melichev and R. Percacci, “Metric-Affine Gravity as an effective field theory,” Annals Phys. 438 (2022), 168757 [arXiv:2112.10193 [gr-qc]].
- O. Melichev and R. Percacci, “On the renormalization of Poincaré gauge theories,” [arXiv:2307.02336 [hep-th]].
- E. Alvarez, J. Anero and S. Gonzalez-Martin, “Quadratic gravity in first order formalism,” JCAP 10 (2017), 008 [arXiv:1703.07993 [hep-th]].
- P. G. Ferreira, C. T. Hill and G. G. Ross, “Inertial Spontaneous Symmetry Breaking and Quantum Scale Invariance,” Phys. Rev. D 98 (2018) no.11, 116012 [arXiv:1801.07676 [hep-th]].
- G. J. Olmo, E. Orazi and G. Pradisi, “Conformal metric-affine gravities,” JCAP 10 (2022), 057 doi:10.1088/1475-7516/2022/10/057 [arXiv:2207.12597 [hep-th]].
- G. J. Olmo and H. Sanchis-Alepuz, “Hamiltonian Formulation of Palatini f(R) theories a la Brans-Dicke,” Phys. Rev. D 83 (2011), 104036 [arXiv:1101.3403 [gr-qc]].
- P. Wang, G. M. Kremer, D. S. M. Alves and X. H. Meng, “A Note on energy-momentum conservation in Palatini formulation of L(R) gravity,” Gen. Rel. Grav. 38 (2006), 517-521 [arXiv:gr-qc/0408058 [gr-qc]].
- G. J. Olmo, “The Gravity Lagrangian according to solar system experiments,” Phys. Rev. Lett. 95 (2005), 261102 [arXiv:gr-qc/0505101 [gr-qc]].
- T. P. Sotiriou, “f(R) gravity and scalar-tensor theory,” Class. Quant. Grav. 23 (2006), 5117-5128 [arXiv:gr-qc/0604028 [gr-qc]].
- H. A. Buchdahl, “REPRESENTATION OF THE EINSTEIN-PROCA FIELD BY AN A(4)*,” J. Phys. A 12 (1979), 1235-1238
- W. Barker and S. Zell, “A Purely Gravitational Origin for Einstein-Proca Theory,” [arXiv:2306.14953 [hep-th]].
- A. Delhom, I. P. Lobo, G. J. Olmo and C. Romero, “A generalized Weyl structure with arbitrary non-metricity,” Eur. Phys. J. C 79 (2019) no.10, 878 [arXiv:1906.05393 [gr-qc]].
- L. Järv, M. Rünkla, M. Saal and O. Vilson, “Nonmetricity formulation of general relativity and its scalar-tensor extension,” Phys. Rev. D 97 (2018) no.12, 124025 [arXiv:1802.00492 [gr-qc]].
- D. Iosifidis and T. Koivisto, “Scale transformations in metric-affine geometry,” Universe 5 (2019), 82 [arXiv:1810.12276 [gr-qc]].
- J. B. Jiménez, A. Jiménez-Cano and Y. N. Obukhov, “On parity-odd sector in metric-affine theories,” Eur. Phys. J. C 83 (2023) no.2, 115 [arXiv:2210.01729 [gr-qc]].
- I. D. Gialamas and K. Tamvakis, “Inflation in metric-affine quadratic gravity,” JCAP 03 (2023), 042 [arXiv:2212.09896 [gr-qc]].
- R. L. Arnowitt, S. Deser and C. W. Misner, “The Dynamics of general relativity,” Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109].
- I. L. Buchbinder and S. L. Lyakhovich, “Canonical Quantization and Local Measure of R**2 Gravity,” Class. Quant. Grav. 4 (1987), 1487-1501
- R. M. Wald, “General Relativity,” (Chicago University Press, Chicago, USA, 1984)
- K. Peeters, “Introducing Cadabra: A Symbolic computer algebra system for field theory problems,” [arXiv:hep-th/0701238 [hep-th]].
- K. Peeters, “A Field-theory motivated approach to symbolic computer algebra,” Comput. Phys. Commun. 176 (2007), 550-558 [arXiv:cs/0608005 [cs.SC]].
- K. Peeters, “Cadabra2: computer algebra for field theory revisited,” J. Open Source Softw. 3 (2018) no.32, 1118
- P. A. M. Dirac, “Lectures on quantum Mechanics,” (Belfer Graduate School of Sciences, Yeshiva University, New York, USA, 1964)
- M. Henneaux and C. Teitelboim, “Quantization of Gauge Systems,” (Princeton University Press, Princeton, New Jersey, USA, 1994)
- P. G. Ferreira and O. J. Tattersall, “Scale Invariant Gravity and Black Hole Ringdown,” Phys. Rev. D 101 (2020) no.2, 024011 [arXiv:1910.04480 [gr-qc]].
- G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys. 10 (1974), 363-384
- J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, “Healthy theories beyond Horndeski,” Phys. Rev. Lett. 114 (2015) no.21, 211101 [arXiv:1404.6495 [hep-th]].
- D. Langlois and K. Noui, “Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability,” JCAP 02 (2016), 034 [arXiv:1510.06930 [gr-qc]].
- G. W. Horndeski, “Conservation of Charge and the Einstein-Maxwell Field Equations,” J. Math. Phys. 17 (1976), 1980-1987
- A. Borowiec, M. Ferraris, M. Francaviglia and I. Volovich, “Universality of Einstein equations for the Ricci squared Lagrangians,” Class. Quant. Grav. 15 (1998), 43-55 [arXiv:gr-qc/9611067 [gr-qc]].
- J. Annala and S. Rasanen, “Stability of non-degenerate Ricci-type Palatini theories,” JCAP 04 (2023), 014 [erratum: JCAP 08 (2023), E02] [arXiv:2212.09820 [gr-qc]].
- D. Gal’tsov and S. Zhidkova, “Ghost-free Palatini derivative scalar–tensor theory: Desingularization and the speed test,” Phys. Lett. B 790 (2019), 453-457 [arXiv:1808.00492 [hep-th]].
- T. Helpin and M. S. Volkov, “Varying the Horndeski Lagrangian within the Palatini approach,” JCAP 01 (2020), 044 [arXiv:1906.07607 [hep-th]].
- T. Helpin and M. S. Volkov, “A metric-affine version of the Horndeski theory,” Int. J. Mod. Phys. A 35 (2020) no.02n03, 2040010 [arXiv:1911.12768 [hep-th]].
- S. Bahamonde, G. Trenkler, L. G. Trombetta and M. Yamaguchi, “Symmetric teleparallel Horndeski gravity,” Phys. Rev. D 107 (2023) no.10, 104024 [arXiv:2212.08005 [gr-qc]].
- T. Ikeda, “Vector-tensor theories in metric-affine geometry,” [arXiv:2311.11104 [gr-qc]].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.