Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

EMRI_MC: A GPU-based Python code for Bayesian inference of EMRI waveforms (2311.17174v2)

Published 28 Nov 2023 in gr-qc, astro-ph.CO, astro-ph.HE, and astro-ph.IM

Abstract: We describe a simple and efficient Python code to perform Bayesian forecasting for gravitational waves (GW) produced by Extreme-Mass-Ratio-Inspiral systems (EMRIs). The code runs on GPUs for an efficient parallelised computation of thousands of waveforms and sampling of the posterior through a Markov-Chain-Monte-Carlo (MCMC) algorithm. EMRI_MC generates EMRI waveforms based on the so--called kludge scheme, and propagates it to the observer accounting for cosmological effects in the observed waveform due to modified gravity/dark energy. The code provides a helpful resource for forecasts for interferometry missions in the milli-Hz scale, e.g the satellite-mission LISA.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.