Papers
Topics
Authors
Recent
Search
2000 character limit reached

Decomposition numbers for unipotent blocks with small $\mathfrak{sl}_2$-weight in finite classical groups

Published 28 Nov 2023 in math.RT | (2311.16939v1)

Abstract: We show that parabolic Kazhdan-Lusztig polynomials of type $A$ compute the decomposition numbers in certain Harish-Chandra series of unipotent characters of finite groups of Lie types $B$, $C$ and $D$ over a field of non-defining characteristic $\ell$. Here, $\ell$ is a ``unitary prime" -- the case that remains open in general. The bipartitions labeling the characters in these series are small with respect to $d$, the order of $q$ mod $\ell$, although they occur in blocks of arbitrarily high defect. Our main technical tool is the categorical action of an affine Lie algebra on the category of unipotent representations, which identifies the branching graph for Harish-Chandra induction with the $\widehat{\mathfrak{sl}}_d$-crystal on a sum of level $2$ Fock spaces. Further key combinatorics has been adapted from Brundan and Stroppel's work on Khovanov arc algebras to obtain the closed formula for the decomposition numbers in a $d$-small Harish-Chandra series.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.