Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Charged particle motion and acceleration around Kerr-MOG black hole (2311.16936v2)

Published 28 Nov 2023 in gr-qc and hep-th

Abstract: One of the most important issues in relativistic astrophysics is to explain the origin mechanisms of (ultra)high energy charged particle components of cosmic rays. Black holes (BHs) being huge reservoirs of (gravitational) energy can be candidates for such particle sources. The main idea of this work is to study the effects of scalar-tensor-vector gravity (STVG) on particle acceleration by examining charged particle dynamics and their acceleration through the magnetic Penrose process (MPP) near magnetized Kerr-MOG BHs. First, we study the horizon structure of the BH. Also, we study the effective potential to gain insight into the stability of circular orbits. Our results show that the magnetic field can extend the region of stable circular orbits, whereas the STVG parameter reduces the {instability} of the circular orbit. The motion of charged particles around the magnetized BH reveals various feasible regimes of the ionized Keplerian disk behavior. Thus, from the examination of particle trajectories we observe that at fixed values of other parameters, the Schwarzschild BH captures the test particle; in the case of Kerr BH, the test particle escapes to infinity or is captured by the BH, while in Kerr-MOG BH, the test particle is trapped in some region around BH and starts orbiting it. On investigating the MPP, we found that with increasing magnetic field, the behavior of orbits becomes more chaotic. As a result, the particle escapes to infinity more quickly.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. DOI 10.1103/RevModPhys.75.559
  2. DOI 10.1038/458587a
  3. DOI 10.1038/377600a0
  4. DOI 10.1103/PhysRevLett.80.1582
  5. DOI 10.1103/PhysRevD.62.023504
  6. DOI 10.1103/PhysRevLett.85.4438
  7. DOI 10.1051/0004-6361/201220282
  8. DOI 10.1103/PhysRevLett.106.131301
  9. DOI 10.1016/j.physrep.2011.09.003
  10. DOI 10.1086/161130
  11. DOI 10.1111/j.1365-2966.2008.13353.x
  12. DOI 10.1142/S0218271807011577. URL https://doi.org/10.1142/S0218271807011577
  13. DOI 10.1142/S0218271807011577
  14. DOI 10.1140/epjc/s10052-015-3352-6
  15. DOI 10.1140/epjc/s10052-017-5152-7
  16. DOI 10.1016/j.dark.2020.100644
  17. DOI 10.1016/j.cjph.2022.06.017
  18. DOI 10.1140/epjc/s10052-021-08919-x
  19. DOI 10.1140/epjp/s13360-023-03979-2
  20. DOI 10.1140/epjc/s10052-020-7992-9
  21. DOI 10.48550/arXiv.2310.08046
  22. DOI 10.1016/j.physletb.2023.138040
  23. DOI 10.1142/S0217732323500712
  24. DOI 10.1093/mnras/stac2113
  25. DOI 10.3390/galaxies9040075
  26. DOI 10.1103/PhysRevD.102.024019
  27. DOI 10.1088/0264-9381/32/16/165009
  28. DOI 10.1103/PhysRevD.90.044029
  29. DOI 10.1103/PhysRevD.10.1680
  30. DOI 10.1023/A:1018863304224
  31. DOI 10.1007/s10714-008-0709-2
  32. DOI 10.1103/PhysRevD.83.104052
  33. DOI 10.1103/PhysRevD.88.024042
  34. DOI 10.1140/epjc/s10052-021-09074-z
  35. DOI 10.1103/PhysRevD.74.124015
  36. DOI 10.1103/PhysRevD.70.024012
  37. DOI 10.1088/0004-637X/722/2/1240
  38. DOI 10.1103/PhysRevD.87.084043
  39. DOI 10.1103/PhysRevD.90.124016
  40. DOI 10.1140/epjc/s10052-019-6961-7
  41. DOI 10.3390/universe6020026
  42. DOI 10.1016/j.dark.2019.100331
  43. DOI 10.1016/j.cjph.2020.08.027
  44. DOI 10.1063/5.0039635
  45. DOI 10.1140/epjc/s10052-023-11897-x. [Erratum: Eur.Phys.J.C 83, 760 (2023)]
  46. DOI 10.1103/PhysRevD.82.084034
  47. DOI 10.1103/PhysRevD.93.084012
  48. DOI 10.1093/mnrasl/sly073
  49. DOI 10.48550/arXiv.2108.05116
  50. DOI 10.1016/j.physletb.2018.01.003
  51. DOI 10.1140/epjc/s10052-023-11691-9
  52. DOI 10.1103/PhysRevD.104.084099
  53. DOI 10.3390/universe7110416
  54. DOI 10.1016/j.physletb.2016.04.041
  55. DOI 10.1093/mnras/stt1670
  56. DOI 10.1140/epjc/s10052-015-3405-x
  57. DOI 10.1103/PhysRevD.97.124049
  58. DOI 10.1007/s10714-017-2184-0
  59. DOI 10.1140/epjc/s10052-015-3862-2
  60. DOI 10.1086/164390
  61. DOI 10.3390/proceedings2019017013
  62. DOI http://dx.doi.org/10.1103/PhysRevD.93.084012
  63. DOI 10.1140/epjc/s10052-017-5431-3
  64. DOI 10.1140/epjc/s10052-020-7692-5
  65. DOI 10.3847/1538-4357/ab8ae9
  66. DOI 10.3847/1538-4357/ab980e
  67. DOI 10.1093/mnras/199.4.883
  68. DOI 10.1111/j.1365-2966.2004.07738.x
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: