Papers
Topics
Authors
Recent
2000 character limit reached

A linear algebra-based approach to understanding the relation between the winding number and zero-energy edge states (2311.16801v4)

Published 28 Nov 2023 in cond-mat.mes-hall

Abstract: The one-to-one relation between the winding number and the number of robust zero-energy edge states, known as bulk-boundary correspondence, is a celebrated feature of 1d systems with chiral symmetry. Although this property can be explained by the K-theory, the underlying mechanism remains elusive. Here, we demonstrate that, even without resorting to advanced mathematical techniques, one can prove this correspondence and clearly illustrate the mechanism using only Cauchy's integral and elementary algebra. Furthermore, our approach to proving bulk-boundary correspondence also provides clear insights into a kind of system that doesn't respect chiral symmetry but can have robust left or right zero-energy edge states. In such systems, one can still assign the winding number to characterize these zero-energy edge states.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.