On the arithmetic of ultraproducts of commutative cancellative monoids (2311.16662v1)
Abstract: We develop first steps in the study of factorizations of elements in ultraproducts of commutative cancellative monoids into irreducible elements. A complete characterization of the (multi-)sets of lengths in such objects is given. As applications, we show that several important properties from factorization theory cannot be expressed as first-order statements in the language of monoids, and we construct integral domains that realize every multiset of integers larger $1$ as a multiset of lengths. Finally, we give a new proof (based on our ultraproduct techniques) of a theorem by Geroldinger, Schmid and Zhong from additive combinatorics and we propose a general method for applying ultraproducts in the setting of non-unique factorizations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.