Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Three-dimensional $\mathbb{Z}$ topological insulators without reflection symmetry (2311.16092v2)

Published 27 Nov 2023 in cond-mat.mes-hall and cond-mat.str-el

Abstract: In recent decades, the Altland-Zirnabuer (AZ) table has proven incredibly powerful in delineating constraints for topological classification of a given band-insulator based on dimension and (nonspatial) symmetry class, and has also been expanded by considering additional crystalline symmetries. Nevertheless, realizing a three-dimensional (3D), time-reversal symmetric (class AII) topological insulator (TI) in the absence of reflection symmetries, with a classification beyond the $\mathbb{Z}_{2}$ paradigm remains an open problem. In this work we present a general procedure for constructing such systems within the framework of projected topological branes (PTBs). In particular, a 3D projected brane from a "parent" four-dimensional topological insulator exhibits a $\mathbb{Z}$ topological classification, corroborated through its response to the inserted bulk monopole loop. More generally, PTBs have been demonstrated to be an effective route to performing dimensional reduction and embedding the topology of a $(d+1)$-dimensional "parent" Hamiltonian in $d$ dimensions, yielding lower-dimensional topological phases beyond the AZ classification without additional symmetries. Our findings should be relevant for the metamaterial platforms, such as photonic and phonic crystals, topolectric circuits, and designer systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P.,  and Ryu, S., “Classification of topological quantum matter with symmetries,” Rev. Mod. Phys. 88, 035005 (2016).
  2. Qi, X.-L. and Zhang, S.-C., “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
  3. Ryu, S., Schnyder, A. P., Furusaki, A.,  and Ludwig, A. W., “Topological insulators and superconductors: tenfold way and dimensional hierarchy,” New Journal of Physics 12, 065010 (2010).
  4. Schnyder, A. P., Ryu, S., Furusaki, A.,  and Ludwig, A. W. W., “Classification of topological insulators and superconductors in three spatial dimensions,” Phys. Rev. B 78, 195125 (2008).
  5. Chiu, C.-K., Yao, H.,  and Ryu, S., “Classification of topological insulators and superconductors in the presence of reflection symmetry,” Phys. Rev. B 88, 075142 (2013).
  6. Morimoto, T. and Furusaki, A., “Topological classification with additional symmetries from clifford algebras,” Phys. Rev. B 88, 125129 (2013).
  7. Moore, J. E., Ran, Y.,  and Wen, X.-G., “Topological surface states in three-dimensional magnetic insulators,” Phys. Rev. Lett. 101, 186805 (2008).
  8. Nelson, A., Neupert, T., Bzdušek, T. c. v.,  and Alexandradinata, A., “Multicellularity of delicate topological insulators,” Phys. Rev. Lett. 126, 216404 (2021).
  9. Lapierre, B., Neupert, T.,  and Trifunovic, L., “n𝑛nitalic_n-band hopf insulator,” Phys. Rev. Res. 3, 033045 (2021).
  10. Das, S. K. and Roy, B., “Hybrid symmetry class topological insulators,” arXiv:2305.16313  (2023), https://doi.org/10.48550/arXiv.2305.16313.
  11. Tyner, A. C. and Sur, S., “Dipolar weyl semimetals,” arXiv:2212.07404  (2022), https://doi.org/10.48550/arXiv.2212.07404.
  12. Zheludev, N. I. and Kivshar, Y. S., “From metamaterials to metadevices,” Nat. mater. 11, 917–924 (2012).
  13. Wang, Z., Chong, Y., Joannopoulos, J. D.,  and Soljačić, M., “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
  14. Hafezi, M., Mittal, S., Fan, J., Migdall, A.,  and Taylor, J., “Imaging topological edge states in silicon photonics,” Nat. Photon. 7, 1001–1005 (2013).
  15. Rechtsman, M. C., Zeuner, J. M., Plotnik, Y., Lumer, Y., Podolsky, D., Dreisow, F., Nolte, S., Segev, M.,  and Szameit, A., “Photonic floquet topological insulators,” Nature 496, 196–200 (2013).
  16. Nash, L. M., Kleckner, D., Read, A., Vitelli, V., Turner, A. M.,  and Irvine, W. T., “Topological mechanics of gyroscopic metamaterials,” Proc. Nat. Acad. Sci. 112, 14495–14500 (2015).
  17. Süsstrunk, R. and Huber, S. D., “Observation of phononic helical edge states in a mechanical topological insulator,” Science 349, 47–50 (2015).
  18. Ningyuan, J., Owens, C., Sommer, A., Schuster, D.,  and Simon, J., “Time- and site-resolved dynamics in a topological circuit,” Phys. Rev. X 5, 021031 (2015).
  19. Peterson, C. W., Benalcazar, W. A., Hughes, T. L.,  and Bahl, G., “A quantized microwave quadrupole insulator with topologically protected corner states,” Nature 555, 346–350 (2018).
  20. Chen, X.-D., Deng, W.-M., Shi, F.-L., Zhao, F.-L., Chen, M.,  and Dong, J.-W., “Direct observation of corner states in second-order topological photonic crystal slabs,” Phys. Rev. Lett. 122, 233902 (2019).
  21. Xie, B.-Y., Su, G.-X., Wang, H.-F., Su, H., Shen, X.-P., Zhan, P., Lu, M.-H., Wang, Z.-L.,  and Chen, Y.-F., “Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals,” Phys. Rev. Lett. 122, 233903 (2019).
  22. Panigrahi, A., Juričić, V.,  and Roy, B., “Projected topological branes,” Commun. Phys. 5, 230 (2022).
  23. Supplementary Material.
  24. Qi, X.-L. and Zhang, S.-C., “Spin-charge separation in the quantum spin hall state,” Phys. Rev. Lett. 101, 086802 (2008).
  25. Ran, Y., Vishwanath, A.,  and Lee, D.-H., “Spin-charge separated solitons in a topological band insulator,” Phys. Rev. Lett. 101, 086801 (2008).
  26. Juričić, V., Mesaros, A., Slager, R.-J.,  and Zaanen, J., “Universal probes of two-dimensional topological insulators: Dislocation and π𝜋\piitalic_π flux,” Phys. Rev. Lett. 108, 106403 (2012).
  27. Mesaros, A., Slager, R.-J., Zaanen, J.,  and Juričić, V., “Zero-energy states bound to a magnetic π𝜋\piitalic_π-flux vortex in a two-dimensional topological insulator,” Nuc. Phys. B 867, 977–991 (2013).
  28. Wang, Z. and Zhang, P., “Quantum spin hall effect and spin-charge separation in a kagomé lattice,” New J. Phys. 12, 043055 (2010).
  29. Tyner, A. C., Sur, S., Puggioni, D., Rondinelli, J. M.,  and Goswami, P., “Topology of three-dimensional dirac semimetals and generalized quantum spin hall systems without gapless edge modes,” arXiv:2012.12906  (2020).
  30. Tyner, A. C. and Goswami, P., “Spin-charge separation and quantum spin hall effect of β𝛽\betaitalic_β-bismuthene,” Sci. Rep. 13, 11393 (2023).
  31. Rosenberg, G. and Franz, M., “Witten effect in a crystalline topological insulator,” Phys. Rev. B 82, 035105 (2010).
  32. Bernevig, B. A., Hughes, T. L.,  and Zhang, S.-C., “Quantum spin hall effect and topological phase transition in hgte quantum wells,” Science 314, 1757–1761 (2006).
  33. Qi, X.-L., Hughes, T.,  and Zhang, S.-C., “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78, 195424 (2008).
  34. Zhang, S.-C. and Hu, J., “A four-dimensional generalization of the quantum hall effect,” Science 294, 823–828 (2001).
  35. Witten, E., “Dyons of charge eθ𝜃\thetaitalic_θ/2π𝜋\piitalic_π,” Phys. Lett. B 86, 283–287 (1979).
  36. Yamagishi, H., “Fermion-monopole system reexamined,” Phys. Rev. D 27, 2383 (1983a).
  37. Yamagishi, H., “Fermion-monopole system reexamined. ii,” Phys. Rev. D 28, 977 (1983b).
  38. Shnir, Y. M., Magnetic monopoles (Springer Science & Business Media, 2006).
  39. Zhao, Y.-Y. and Shen, S.-Q., “A magnetic monopole in topological insulator: exact solution,” arXiv:1208.3027  (2012).
  40. Price, H. M., Zilberberg, O., Ozawa, T., Carusotto, I.,  and Goldman, N., “Four-dimensional quantum hall effect with ultracold atoms,” Phys. Rev. Lett. 115, 195303 (2015).
  41. Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O.,  and Carusotto, I., “Synthetic dimensions in integrated photonics: From optical isolation to four-dimensional quantum hall physics,” Phys. Rev. A 93, 043827 (2016).
  42. Zilberberg, O., Huang, S., Guglielmon, J., Wang, M., Chen, K. P., Kraus, Y. E.,  and Rechtsman, M. C., “Photonic topological boundary pumping as a probe of 4d quantum hall physics,” Nature 553, 59–62 (2018).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.