Robust Conditional Wald Inference for Over-Identified IV (2311.15952v1)
Abstract: For the over-identified linear instrumental variables model, researchers commonly report the 2SLS estimate along with the robust standard error and seek to conduct inference with these quantities. If errors are homoskedastic, one can control the degree of inferential distortion using the first-stage F critical values from Stock and Yogo (2005), or use the robust-to-weak instruments Conditional Wald critical values of Moreira (2003). If errors are non-homoskedastic, these methods do not apply. We derive the generalization of Conditional Wald critical values that is robust to non-homoskedastic errors (e.g., heteroskedasticity or clustered variance structures), which can also be applied to nonlinear weakly-identified models (e.g. weakly-identified GMM).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.