Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Mixed scalarization of charged black holes: from spontaneous to non-linear scalarization (2311.15850v2)

Published 27 Nov 2023 in gr-qc, astro-ph.CO, hep-ph, and hep-th

Abstract: Scalarized black holes (BH) have been shown to form dynamically in extended-scalar-tensor theories, either through spontaneous scalarization -- when the BH is unstable against linear perturbations -- or through a non-linear scalarization. In the latter, linearly stable BHs can ignite scalarization when sufficiently perturbed. These phenomena are, however, not incompatible and mixed scalarization is also possible. We explore two aspects of the Einstein-Maxwell-Scalar model: solutions containing, simultaneously, linear (\textit{aka} standard) and non-linear scalarization; and the effects of having one of the coupling constants with an 'opposite sign' to the one leading to scalarization. Both points are addressed by constructing and examining the mixed scalarization's domain of existence. An overall dominance of the spontaneous scalarization over the non-linear scalarization is observed. Thermodynamically, an entropical preference for mixed over the standard scalarization (spontaneous or non-linear) exists. In the presence of counter scalarization, a quench of the scalarization occurs, mimicking the effect of a scalar particle's mass/positive self-interaction term.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (69)
  1. B. P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, et al., “Observation of gravitational waves from a binary black hole merger,” Physical review letters, vol. 116, no. 6, p. 061102, 2016.
  2. R. Abbott, T. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. Adhikari, V. Adya, C. Affeldt, et al., “Gwtc-2: compact binary coalescences observed by ligo and virgo during the first half of the third observing run,” Physical Review X, vol. 11, no. 2, p. 021053, 2021.
  3. D. Ball, C.-k. Chan, P. Christian, B. T. Jannuzi, J. Kim, D. P. Marrone, L. Medeiros, F. Ozel, D. Psaltis, M. Rose, et al., “First m87 event horizon telescope results. i. the shadow of the supermassive black hole,” IOP PUBLISHING LTD, 2019.
  4. K. Akiyama, A. Alberdi, W. Alef, J. C. Algaba, R. Anantua, K. Asada, R. Azulay, U. Bach, A.-K. Baczko, D. Ball, et al., “First sagittarius a* event horizon telescope results. i. the shadow of the supermassive black hole in the center of the milky way,” The Astrophysical Journal Letters, vol. 930, no. 2, p. L12, 2022.
  5. C. A. Herdeiro and E. Radu, “Asymptotically flat black holes with scalar hair: a review,” International Journal of Modern Physics D, vol. 24, no. 09, p. 1542014, 2015.
  6. T. Damour and G. Esposito-Farese, “Nonperturbative strong-field effects in tensor-scalar theories of gravitation,” Physical Review Letters, vol. 70, no. 15, p. 2220, 1993.
  7. Y. S. Myung and D.-C. Zou, “Instability of reissner–nordström black hole in einstein-maxwell-scalar theory,” The European Physical Journal C, vol. 79, pp. 1–11, 2019.
  8. C. A. Herdeiro, E. Radu, N. Sanchis-Gual, and J. A. Font, “Spontaneous scalarization of charged black holes,” Physical review letters, vol. 121, no. 10, p. 101102, 2018.
  9. R. Konoplya and A. Zhidenko, “Analytical representation for metrics of scalarized einstein-maxwell black holes and their shadows,” Physical Review D, vol. 100, no. 4, p. 044015, 2019.
  10. Q. Gan, P. Wang, H. Wu, and H. Yang, “Photon ring and observational appearance of a hairy black hole,” Physical Review D, vol. 104, no. 4, p. 044049, 2021.
  11. Q. Gan, P. Wang, H. Wu, and H. Yang, “Photon spheres and spherical accretion image of a hairy black hole,” Physical Review D, vol. 104, no. 2, p. 024003, 2021.
  12. G. Guo, P. Wang, H. Wu, and H. Yang, “Scalarized einstein–maxwell-scalar black holes in anti-de sitter spacetime,” The European Physical Journal C, vol. 81, pp. 1–14, 2021.
  13. Y. Peng, “Scalarization of horizonless reflecting stars: neutral scalar fields non-minimally coupled to maxwell fields,” Physics Letters B, vol. 804, p. 135372, 2020.
  14. Y. S. Myung and D.-C. Zou, “Scalarized black holes in the einstein-maxwell-scalar theory with a quasitopological term,” Physical Review D, vol. 103, no. 2, p. 024010, 2021.
  15. M. Khalil, N. Sennett, J. Steinhoff, and A. Buonanno, “Theory-agnostic framework for dynamical scalarization of compact binaries,” Physical Review D, vol. 100, no. 12, p. 124013, 2019.
  16. C.-Y. Zhang, Q. Chen, Y. Liu, W.-K. Luo, Y. Tian, and B. Wang, “Critical phenomena in dynamical scalarization of charged black holes,” Physical Review Letters, vol. 128, no. 16, p. 161105, 2022.
  17. G. Guo, P. Wang, H. Wu, and H. Yang, “Thermodynamics and phase structure of an einstein-maxwell-scalar model in extended phase space,” Physical Review D, vol. 105, no. 6, p. 064069, 2022.
  18. S. Hod, “Spontaneous scalarization of charged reissner-nordström black holes: Analytic treatment along the existence line,” Physics Letters B, vol. 798, p. 135025, 2019.
  19. S. Hod, “Analytic treatment of near-extremal charged black holes supporting non-minimally coupled massless scalar clouds,” The European Physical Journal C, vol. 80, pp. 1–7, 2020.
  20. S. Hod, “Spin-charge induced scalarization of kerr-newman black-hole spacetimes,” Journal of High Energy Physics, vol. 2022, no. 8, pp. 1–12, 2022.
  21. J. L. Blázquez-Salcedo, S. Kahlen, and J. Kunz, “Critical solutions of scalarized black holes,” Symmetry, vol. 12, no. 12, p. 2057, 2020.
  22. G. W. Gibbons, “Vacuum polarization and the spontaneous loss of charge by black holes,” Communications in Mathematical Physics, vol. 44, pp. 245–264, 1975.
  23. D. D. Doneva and S. S. Yazadjiev, “New gauss-bonnet black holes with curvature-induced scalarization in extended scalar-tensor theories,” Physical review letters, vol. 120, no. 13, p. 131103, 2018.
  24. H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou, and E. Berti, “Spontaneous scalarization of black holes and compact stars from a gauss-bonnet coupling,” Physical review letters, vol. 120, no. 13, p. 131104, 2018.
  25. G. Antoniou, A. Bakopoulos, and P. Kanti, “Evasion of no-hair theorems and novel black-hole solutions in gauss-bonnet theories,” Physical review letters, vol. 120, no. 13, p. 131102, 2018.
  26. C. A. Herdeiro, T. Ikeda, M. Minamitsuji, T. Nakamura, and E. Radu, “Spontaneous scalarization of a conducting sphere in maxwell-scalar models,” Physical Review D, vol. 103, no. 4, p. 044019, 2021.
  27. C.-Y. Zhang, P. Liu, Y.-Q. Liu, C. Niu, and B. Wang, “Dynamical charged black hole spontaneous scalarization in anti–de sitter spacetimes,” Physical Review D, vol. 104, no. 8, p. 084089, 2021.
  28. C.-Y. Zhang, Q. Chen, Y. Liu, W.-K. Luo, Y. Tian, and B. Wang, “Dynamical transitions in scalarization and descalarization through black hole accretion,” Physical Review D, vol. 106, no. 6, p. L061501, 2022.
  29. F. Yao, “Scalarized einstein–maxwell-scalar black holes in a cavity,” The European Physical Journal C, vol. 81, no. 11, p. 1009, 2021.
  30. G. Antoniou, A. Papageorgiou, and P. Kanti, “Probing modified gravity theories with scalar fields using black-hole images,” Universe, vol. 9, no. 3, p. 147, 2023.
  31. J.-Y. Jiang, Q. Chen, Y. Liu, Y. Tian, W. Xiong, C.-Y. Zhang, and B. Wang, “Type i critical dynamical scalarization and descalarization in einstein-maxwell-scalar theory,” arXiv preprint arXiv:2306.10371, 2023.
  32. W.-K. Luo, C.-Y. Zhang, P. Liu, C. Niu, and B. Wang, “Dynamical spontaneous scalarization in einstein-maxwell-scalar models in anti–de sitter spacetime,” Physical Review D, vol. 106, no. 6, p. 064036, 2022.
  33. C. Niu, W. Xiong, P. Liu, C.-Y. Zhang, and B. Wang, “Dynamical descalarization in einstein-maxwell-scalar theory,” arXiv preprint arXiv:2209.12117, 2022.
  34. M.-Y. Lai, Y. S. Myung, R.-H. Yue, and D.-C. Zou, “Spin-charge induced spontaneous scalarization of kerr-newman black holes,” Physical Review D, vol. 106, no. 8, p. 084043, 2022.
  35. W. Xiong, P. Liu, C. Niu, C.-Y. Zhang, and B. Wang, “Dynamical spontaneous scalarization in einstein-maxwell-scalar theory,” Chinese Physics C, vol. 46, no. 9, p. 095103, 2022.
  36. Q. Chen, Z. Ning, Y. Tian, X. Wu, C.-Y. Zhang, and H. Zhang, “Time evolution of einstein-maxwell-scalar black holes after a thermal quench,” Journal of High Energy Physics, vol. 2023, no. 10, pp. 1–26, 2023.
  37. C. Promsiri, T. Tangphati, E. Hirunsirisawat, and S. Ponglertsakul, “Scalarization of planar anti de sitter charged black holes in einstein-maxwell-scalar theory,” arXiv preprint arXiv:2302.04654, 2023.
  38. F. Corelli, T. Ikeda, and P. Pani, “Challenging cosmic censorship in einstein-maxwell-scalar theory with numerically simulated gedanken experiments,” Physical Review D, vol. 104, no. 8, p. 084069, 2021.
  39. Q. Chen, Z. Ning, Y. Tian, B. Wang, and C.-Y. Zhang, “Nonlinear dynamics of hot, cold, and bald einstein-maxwell-scalar black holes in ads spacetime,” Physical Review D, vol. 108, no. 8, p. 084016, 2023.
  40. H. Xu and S.-J. Zhang, “Tachyonic instability of reissner-nordström-melvin black holes in einstein-maxwell-scalar theory,” Nuclear Physics B, vol. 987, p. 116110, 2023.
  41. G. Guo, P. Wang, H. Wu, and H. Yang, “Scalarized kerr-newman black holes,” Journal of High Energy Physics, vol. 2023, no. 10, pp. 1–20, 2023.
  42. P. G. Fernandes, C. A. Herdeiro, A. M. Pombo, E. Radu, and N. Sanchis-Gual, “Spontaneous scalarisation of charged black holes: coupling dependence and dynamical features,” Classical and Quantum Gravity, vol. 36, no. 13, p. 134002, 2019.
  43. D. Astefanesei, C. Herdeiro, A. Pombo, and E. Radu, “Einstein-maxwell-scalar black holes: classes of solutions, dyons and extremality,” Journal of High Energy Physics, vol. 2019, no. 10, pp. 1–27, 2019.
  44. D. D. Doneva and S. S. Yazadjiev, “Beyond the spontaneous scalarization: New fully nonlinear mechanism for the formation of scalarized black holes and its dynamical development,” Physical Review D, vol. 105, no. 4, p. L041502, 2022.
  45. A. M. Pombo and D. D. Doneva, “Effects of mass and self-interaction on nonlinear scalarization of scalar-gauss-bonnet black holes,” arXiv preprint arXiv:2310.08638, 2023.
  46. J. M. Oliveira and A. M. Pombo, “Spontaneous vectorization of electrically charged black holes,” Physical Review D, vol. 103, no. 4, p. 044004, 2021.
  47. S. Barton, B. Hartmann, B. Kleihaus, and J. Kunz, “Spontaneously vectorized einstein-gauss-bonnet black holes,” Physics Letters B, vol. 817, p. 136336, 2021.
  48. L. Pizzuti and A. M. Pombo, “The spooky ghost of vectorization,” arXiv preprint arXiv:2310.18399, 2023.
  49. C. W. Misner and D. H. Sharp, “Relativistic equations for adiabatic, spherically symmetric gravitational collapse,” Physical Review, vol. 136, no. 2B, p. B571, 1964.
  50. C. A. Herdeiro, J. M. Oliveira, A. M. Pombo, and E. Radu, “Deconstructing scaling virial identities in general relativity: spherical symmetry and beyond,” Physical Review D, vol. 106, no. 2, p. 024054, 2022.
  51. J. M. Oliveira and A. M. Pombo, “A convenient gauge for virial identities in axial symmetry,” Physics Letters B, vol. 837, p. 137646, 2023.
  52. C. A. Herdeiro, J. M. Oliveira, A. M. Pombo, and E. Radu, “Virial identities in relativistic gravity: 1d effective actions and the role of boundary terms,” Physical Review D, vol. 104, no. 10, p. 104051, 2021.
  53. G. Derrick, “Comments on nonlinear wave equations as models for elementary particles,” Journal of Mathematical Physics, vol. 5, no. 9, pp. 1252–1254, 1964.
  54. P. G. Fernandes, “Einstein–maxwell-scalar black holes with massive and self-interacting scalar hair,” Physics of the Dark Universe, vol. 30, p. 100716, 2020.
  55. J. L. Blázquez-Salcedo, C. A. Herdeiro, J. Kunz, A. M. Pombo, and E. Radu, “Einstein-maxwell-scalar black holes: the hot, the cold and the bald,” Physics Letters B, vol. 806, p. 135493, 2020.
  56. J. L. Blázquez-Salcedo, C. A. Herdeiro, S. Kahlen, J. Kunz, A. M. Pombo, and E. Radu, “Quasinormal modes of hot, cold and bald einstein–maxwell-scalar black holes,” The European Physical Journal C, vol. 81, pp. 1–16, 2021.
  57. D.-C. Zou and Y. S. Myung, “Scalarized charged black holes with scalar mass term,” Physical Review D, vol. 100, no. 12, p. 124055, 2019.
  58. C. F. Macedo, J. Sakstein, E. Berti, L. Gualtieri, H. O. Silva, and T. P. Sotiriou, “Self-interactions and spontaneous black hole scalarization,” Physical Review D, vol. 99, no. 10, p. 104041, 2019.
  59. D. D. Doneva, K. V. Staykov, and S. S. Yazadjiev, “Gauss-bonnet black holes with a massive scalar field,” Physical Review D, vol. 99, no. 10, p. 104045, 2019.
  60. S. W. Hawking, “Particle creation by black holes,” Communications in mathematical physics, vol. 43, no. 3, pp. 199–220, 1975.
  61. J. D. Bekenstein, “Black holes and the second law,” in JACOB BEKENSTEIN: The Conservative Revolutionary, pp. 303–306, World Scientific, 2020.
  62. P. Majumdar, “Black hole entropy and quantum gravity,” arXiv preprint gr-qc/9807045, 1998.
  63. A. Messiah, Quantum Mechanics. No. Chapter III2 in 1, (North Holland Publishing Company, 1961.
  64. M. Kimura, “A simple test for the stability of a black hole by s-deformation,” Classical and Quantum Gravity, vol. 34, no. 23, p. 235007, 2017.
  65. M. Kimura and T. Tanaka, “Robustness of the s-deformation method for black hole stability analysis,” Classical and Quantum Gravity, vol. 35, no. 19, p. 195008, 2018.
  66. M. Kimura and T. Tanaka, “Stability analysis of black holes by the s-deformation method for coupled systems,” Classical and Quantum Gravity, vol. 36, no. 5, p. 055005, 2019.
  67. Y. S. Myung and D.-C. Zou, “Quasinormal modes of scalarized black holes in the einstein–maxwell–scalar theory,” Physics Letters B, vol. 790, pp. 400–407, 2019.
  68. Y. S. Myung and D.-C. Zou, “Stability of scalarized charged black holes in the einstein–maxwell–scalar theory,” The European Physical Journal C, vol. 79, pp. 1–11, 2019.
  69. G. Guo, P. Wang, H. Wu, and H. Yang, “Quasinormal modes of black holes with multiple photon spheres,” Journal of High Energy Physics, vol. 2022, no. 6, pp. 1–24, 2022.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.