Papers
Topics
Authors
Recent
2000 character limit reached

$k$-dimensional transversals for fat convex sets

Published 27 Nov 2023 in math.CO and cs.CG | (2311.15646v3)

Abstract: We prove a fractional Helly theorem for $k$-flats intersecting fat convex sets. A family $\mathcal{F}$ of sets is said to be $\rho$-fat if every set in the family contains a ball and is contained in a ball such that the ratio of the radii of these balls is bounded by $\rho$. We prove that for every dimension $d$ and positive reals $\rho$ and $\alpha$ there exists a positive $\beta=\beta(d,\rho, \alpha)$ such that if $\mathcal{F}$ is a finite family of $\rho$-fat convex sets in $\mathbb{R}d$ and an $\alpha$-fraction of the $(k+2)$-size subfamilies from $\mathcal{F}$ can be hit by a $k$-flat, then there is a $k$-flat that intersects at least a $\beta$-fraction of the sets of $\mathcal{F}$. We prove spherical and colorful variants of the above results and prove a $(p,k+2)$-theorem for $k$-flats intersecting balls.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Bounding the piercing number. Discrete & Computational Geometry, 13:245–256, 1995.
  2. Transversal numbers for hypergraphs arising in geometry. Advances in Applied Mathematics, 29(1):79–101, 2002.
  3. Piercing convex sets and the Hadwiger-Debrunner (p,q)𝑝𝑞(p,q)( italic_p , italic_q )-problem. Advances in Mathematics, 96(1):103–112, 1992.
  4. A Helly-type theorem for higher-dimensional transversals. Computational Geometry, 21(3):177–183, 2002.
  5. Imre Bárány. Pairwise intersecting convex sets and cylinders in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., 64:37–44, 2021.
  6. Colourful and fractional (p,q)𝑝𝑞(p,q)( italic_p , italic_q )-theorems. Discrete & Computational Geometry, 51(3):628–642, 2014.
  7. Stabbing boxes with finitely many axis-parallel lines and flats. arXiv preprint arXiv:2308.10479, 2023.
  8. Lower bounds to Helly numbers of line transversals to disjoint congruent balls. Israel Journal of Mathematics, 190(1):213–228, 2012.
  9. Some new results on geometric transversals. Discrete & Computational Geometry, online, 2023.
  10. Helly-type theorems for line transversals to disjoint unit balls. Discrete & Computational Geometry, 39:194–212, 2008.
  11. Ludwig Danzer. Über ein Problem aus der kombinatorischen Geometrie. Archiv der Mathematik, 8(5):347–351, 1957.
  12. Ludwig Danzer. Zur Lösung des Gallaischen Problems über Kreisscheiben in der Euklidischen Ebene. (On the solution of the problem of Gallai about circular discs in the Euclidean plane). Stud. Sci. Math. Hung., 21:111–134, 1986.
  13. Piercing translates and homothets of a convex body. Algorithmica, 61(1):94–115, 2011.
  14. Heterochromatic higher order transversals for convex sets. arXiv preprint arXiv:2212.14091, 2022.
  15. Branko Grünbaum. On intersections of similar sets. Port. Math., 18:155–164, 1959.
  16. Über eine Variante zum Hellyschen Satz. Arch. Math., 8:309–313, 1957.
  17. Stabbing convex bodies with lines and flats. In 37th International Symposium on Computational Geometry (SoCG 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.
  18. Epsilon-nets and simplex range queries. In Proceedings of the second annual symposium on Computational geometry, pages 61–71, 1986.
  19. Eduard Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jber. Deutsch. Math. Verein, 32:175–176, 1923.
  20. No Helly theorem for stabbing translates by lines in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Discrete & Computational Geometry, 31(3):405–410, 2004.
  21. Helly-type theorems and geometric transversals. Handbook of Discrete and Computational Geometry, pages 91–123 (Chapter 4), 2017.
  22. Andreas F. Holmsen. Large cliques in hypergraphs with forbidden substructures. Combinatorica, 40(4):527–537, 2020.
  23. Radon numbers and the fractional Helly theorem. Isr. J. Math., 241(1):433–447, 2021.
  24. Fritz John. Extremum problems with inequalities as subsidiary conditions. Studies Essays, pres. to R. Courant, 187-204 (1948)., 1948.
  25. M. Katchalski and A. Liu. A problem of geometry in 𝐑nsuperscript𝐑𝑛{\bf R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Proc. Amer. Math. Soc., 75(2):284–288, 1979.
  26. Meir Katchalski. A conjecture of grünbaum on common transversals. Mathematica scandinavica, 59:192–198, 1986.
  27. An (ℵ0,k+2)subscriptℵ0𝑘2(\aleph_{0},k+2)( roman_ℵ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_k + 2 )-theorem for k-transversals. In 38th International Symposium on Computational Geometry (SoCG 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.
  28. An (ℵ0,k+2)subscriptℵ0𝑘2(\aleph_{0},k+2)( roman_ℵ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_k + 2 )-theorem for k𝑘kitalic_k-transversals. arXiv preprint arXiv:2306.02181, 2023.
  29. Further consequences of the colorful Helly hypothesis. Discrete Comput. Geom., 63(4):848–866, 2020.
  30. Jiří Matoušek. Bounded VC-dimension implies a fractional Helly theorem. Discrete & Computational Geometry, 31:251–255, 2004.
  31. Line transversals in families of connected sets in the plane. SIAM J. Discrete Math., 36(4):2916–2919, 2022.
  32. Lajos Stachó. A solution of Gallai’s problem on pinning down circles. Mat. Lapok, 32:19–47, 1984.
  33. Helge Tverberg. Proof of Grünbaum’s conjecture on common transversals for translates. Discrete & Computational Geometry, 4:191–203, 1989.
  34. Paul Vincensini. Figures convexes et variétés linéaires de l’espace euclidiena n𝑛nitalic_n dimensions. Bull. Sci. Math, 59:163–174, 1935.
  35. Shira Zerbib. Bounds on piercing and line-piercing numbers in families of convex sets in the plane, 2023.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.