Quantum Diffusion Models (2311.15444v1)
Abstract: We propose a quantum version of a generative diffusion model. In this algorithm, artificial neural networks are replaced with parameterized quantum circuits, in order to directly generate quantum states. We present both a full quantum and a latent quantum version of the algorithm; we also present a conditioned version of these models. The models' performances have been evaluated using quantitative metrics complemented by qualitative assessments. An implementation of a simplified version of the algorithm has been executed on real NISQ quantum hardware.
- “Deep unsupervised learning using nonequilibrium thermodynamics” In International conference on machine learning, 2015, pp. 2256–2265 PMLR
- Jonathan Ho, Ajay Jain and Pieter Abbeel “Denoising diffusion probabilistic models” In Advances in neural information processing systems 33, 2020, pp. 6840–6851
- “Diffusion Models in Vision: A Survey” In IEEE Transactions on Pattern Analysis and Machine Intelligence 45.9, 2023, pp. 10850–10869 DOI: 10.1109/TPAMI.2023.3261988
- Jiaming Song, Chenlin Meng and Stefano Ermon “Denoising Diffusion Implicit Models”, 2022 arXiv:2010.02502 [cs.LG]
- Diederik P Kingma and Max Welling “Auto-encoding variational bayes” In arXiv preprint arXiv:1312.6114, 2013
- “Generative adversarial networks” In Communications of the ACM 63.11 ACM New York, NY, USA, 2020, pp. 139–144
- “Surface codes: Towards practical large-scale quantum computation” In Phys. Rev. A 86 American Physical Society, 2012, pp. 032324 DOI: 10.1103/PhysRevA.86.032324
- Savvas Varsamopoulos, Ben Criger and Koen Bertels “Decoding small surface codes with feedforward neural networks” In Quantum Science and Technology 3.1 IOP Publishing, 2017, pp. 015004 DOI: 10.1088/2058-9565/aa955a
- “Convolutional neural network based decoders for surface codes” In Quantum Information Processing 22.3, 2023, pp. 151 DOI: 10.1007/s11128-023-03898-2
- E Knill “Quantum computing with realistically noisy devices” In Nature 434, 2005, pp. 39–44 DOI: 10.1038/nature03350
- “High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction” In Phys. Rev. X 8 American Physical Society, 2018, pp. 021054 DOI: 10.1103/PhysRevX.8.021054
- John Preskill “Quantum computing in the NISQ era and beyond” In Quantum 2 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2018, pp. 79
- Peter W. Shor “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer” In SIAM Journal on Computing 26.5 Society for Industrial & Applied Mathematics (SIAM), 1997, pp. 1484–1509 DOI: 10.1137/s0097539795293172
- “Quantum machine learning” In Nature 549.7671 Springer ScienceBusiness Media LLC, 2017, pp. 195–202 DOI: 10.1038/nature23474
- Sau Lan Wu and Shinjae Yoo “Challenges and opportunities in quantum machine learning for high-energy physics” In Nature Reviews Physics 4.3, 2022, pp. 143–144 DOI: 10.1038/s42254-022-00425-7
- “Variational quantum algorithms” In Nature Reviews Physics 3.9 Springer ScienceBusiness Media LLC, 2021, pp. 625–644 DOI: 10.1038/s42254-021-00348-9
- “A study of the pulse-based variational quantum eigensolver on cross-resonance based hardware”, 2023 arXiv:2303.02410 [quant-ph]
- “Long-Lived Particles Anomaly Detection with Parametrized Quantum Circuits” In Particles 6.1, 2023, pp. 297–311 DOI: 10.3390/particles6010016
- Matteo Robbiati, Juan M. Cruz-Martinez and Stefano Carrazza “Determining probability density functions with adiabatic quantum computing” 7 pages, 3 figures, 2023 arXiv: http://cds.cern.ch/record/2853183
- “A quantum analytical Adam descent through parameter shift rule using Qibo”, 2022 arXiv:2210.10787 [quant-ph]
- Juan M. Cruz-Martinez, Matteo Robbiati and Stefano Carrazza “Multi-variable integration with a variational quantum circuit”, 2023 arXiv:2308.05657 [quant-ph]
- “A Quantum Convolutional Neural Network on NISQ Devices”, 2021 arXiv:2104.06918 [quant-ph]
- “Simulating quench dynamics on a digital quantum computer with data-driven error mitigation” In Quantum Science and Technology 6.4 IOP Publishing, 2021, pp. 045003 DOI: 10.1088/2058-9565/ac0e7a
- “Learning-Based Quantum Error Mitigation” In PRX Quantum 2 American Physical Society, 2021, pp. 040330 DOI: 10.1103/PRXQuantum.2.040330
- “Scalable Mitigation of Measurement Errors on Quantum Computers” In PRX Quantum 2 American Physical Society, 2021, pp. 040326 DOI: 10.1103/PRXQuantum.2.040326
- “Measurement error mitigation in quantum computers through classical bit-flip correction” In Phys. Rev. A 105 American Physical Society, 2022, pp. 062404 DOI: 10.1103/PhysRevA.105.062404
- “Quantum generative adversarial networks” In Physical Review A 98.1 APS, 2018, pp. 012324
- “Style-based quantum generative adversarial networks for Monte Carlo events” In Quantum 6 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2022, pp. 777 DOI: 10.22331/q-2022-08-17-777
- “Quantum variational autoencoder” In Quantum Science and Technology 4.1 IOP Publishing, 2018, pp. 014001
- Marco Parigi, Stefano Martina and Filippo Caruso “Quantum-Noise-driven Generative Diffusion Models” In arXiv preprint arXiv:2308.12013, 2023
- “Generative quantum machine learning via denoising diffusion probabilistic models” In arXiv preprint arXiv:2310.05866, 2023
- “Parameterized quantum circuits as machine learning models” In Quantum Science and Technology 4.4 IOP Publishing, 2019, pp. 043001
- “Circuit-centric quantum classifiers” In Physical Review A 101.3 APS, 2020, pp. 032308
- “Quantum circuit learning” In Physical Review A 98.3 APS, 2018, pp. 032309
- “Evaluating analytic gradients on quantum hardware” In Physical Review A 99.3 APS, 2019, pp. 032331
- “Pennylane: Automatic differentiation of hybrid quantum-classical computations” In arXiv preprint arXiv:1811.04968, 2018
- “Machine learning with quantum computers” Springer, 2021
- Maria Schuld, Ryan Sweke and Johannes Jakob Meyer “Effect of data encoding on the expressive power of variational quantum-machine-learning models” In Phys. Rev. A 103 American Physical Society, 2021, pp. 032430 DOI: 10.1103/PhysRevA.103.032430
- “An introduction to deep generative modeling” In GAMM-Mitteilungen 44.2 Wiley Online Library, 2021, pp. e202100008
- “Deep Unsupervised Learning using Nonequilibrium Thermodynamics”, 2015 arXiv:1503.03585 [cs.LG]
- John A. Cortese and Timothy M. Braje “Loading Classical Data into a Quantum Computer”, 2018 arXiv:1803.01958 [quant-ph]
- “Stabilization of quantum computations by symmetrization” In SIAM Journal on Computing 26.5 SIAM, 1997, pp. 1541–1557
- Michael A Nielsen “The entanglement fidelity and quantum error correction” In arXiv preprint quant-ph/9606012, 1996
- Jürgen Schmidhuber “Deep learning in neural networks: An overview” In Neural networks 61 Elsevier, 2015, pp. 85–117
- Ian T Jolliffe and Jorge Cadima “Principal component analysis: a review and recent developments” In Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences 374.2065 The Royal Society Publishing, 2016, pp. 20150202
- Laurens Van der Maaten and Geoffrey Hinton “Visualizing data using t-SNE.” In Journal of machine learning research 9.11, 2008
- Andrew P Bradley “The use of the area under the ROC curve in the evaluation of machine learning algorithms” In Pattern recognition 30.7 Elsevier, 1997, pp. 1145–1159
- “Gans trained by a two time-scale update rule converge to a local nash equilibrium” In Advances in neural information processing systems 30, 2017
- “Evaluating generative networks using Gaussian mixtures of image features” In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 279–288
- “Barren plateaus in quantum neural network training landscapes” In Nature communications 9.1 Nature Publishing Group UK London, 2018, pp. 4812
- “Dynamics of superconducting qubit relaxation times”, 2022 arXiv:2105.15201 [quant-ph]
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.