Papers
Topics
Authors
Recent
Search
2000 character limit reached

Finite width of anyons changes their braiding signature

Published 25 Nov 2023 in cond-mat.mes-hall and cond-mat.str-el | (2311.15094v4)

Abstract: Anyons are particles intermediate between fermions and bosons, characterized by a nontrivial exchange phase, yielding remarkable braiding statistics. Recent experiments have shown that anyonic braiding has observable consequences on edge transport in the fractional quantum Hall effect (FQHE). Here, we study transport signatures of anyonic braiding when the anyons have a finite width. We show that the width of the anyons, even extremely small, can have a tremendous impact on transport properties and braiding signatures. In particular, we find that taking the finite width into account allows us to explain recent experimental results on FQHE at filling factor $2/5$ [Ruelle et al., Phys. Rev. X \textbf{13}, 011031 (2023)]. Our work shows that the finite width of anyons crucially influences setups involving anyonic braiding, especially when the exchange phase is larger than $\pi/2$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. J. M. Leinaas and J. Myrheim, Il Nuovo Cimento B (1971-1996) 37, 1 (1977).
  2. F. Wilczek, Phys. Rev. Lett. 49, 957 (1982).
  3. D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev. Lett. 53, 722 (1984).
  4. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
  5. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
  6. I. Safi, P. Devillard, and T. Martin, Phys. Rev. Lett. 86, 4628 (2001).
  7. S. Vishveshwara, Phys. Rev. Lett. 91, 196803 (2003).
  8. W. Bishara and C. Nayak, Phys. Rev. B 77, 165302 (2008).
  9. B. Rosenow and S. H. Simon, Phys. Rev. B 85, 201302 (2012).
  10. I. P. Levkivskyi, J. Fröhlich, and E. V. Sukhorukov, Phys. Rev. B 86, 245105 (2012).
  11. B. Lee, C. Han, and H.-S. Sim, Phys. Rev. Lett. 123, 016803 (2019).
  12. J.-Y. M. Lee and H.-S. Sim, Nature Communications 13, 6660 (2022).
  13. B. Rosenow, I. P. Levkivskyi, and B. I. Halperin, Phys. Rev. Lett. 116, 156802 (2016).
  14. C. Mora, Anyonic exchange in a beam splitter (2022), arXiv:2212.05123 [cond-mat.mes-hall] .
  15. See Supplemental Material for details on the model with multiple bosonic edge modes and theory of the anyon collider.
  16. X. G. Wen, Adv. Phys. 44, 405 (1995a).
  17. M. Aranzana, N. Regnault, and T. Jolicoeur, Phys. Rev. B 72, 085318 (2005).
  18. L. Savary and L. Balents, Reports on Progress in Physics 80, 016502 (2016).
  19. X.-G. Wen, Advances in Physics 44, 405 (1995b), https://doi.org/10.1080/00018739500101566 .
  20. O. Shtanko, K. Snizhko, and V. Cheianov, Phys. Rev. B 89, 125104 (2014).
  21. There exists a quasiparticle of charge 2e/5 that has an even lower scaling dimension, which we ignore as it is not seen in experiments.
Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.