Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving the Performance of Digitized Counterdiabatic Quantum Optimization via Algorithm-Oriented Qubit Mapping (2311.14624v3)

Published 24 Nov 2023 in quant-ph

Abstract: This paper presents strategies to improve the performance of digitized counterdiabatic quantum optimization algorithms by cooptimizing gate sequences, algorithm parameters, and qubit mapping. Demonstrations on near-term quantum devices validate the effectiveness of these strategies, leveraging both algorithmic and hardware advantages. Our approach increases the approximation ratio by an average of 4.49$\times$ without error mitigation and 84.8% with error mitigation, while reducing CX gate count and circuit depth by 28.8% and 33.4%, respectively, compared to Qiskit and Tket. These findings provide valuable insights into the codesign of algorithm implementation, tailored to optimize qubit mapping and algorithm parameters, with broader implications for enhancing algorithm performance on near-term quantum devices.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.