Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Transitive inference as probabilistic preference learning (2311.13874v2)

Published 23 Nov 2023 in q-bio.NC

Abstract: Transitive Inference (TI) is a cognitive task that assesses an organism's ability to infer novel relations between items based on previously acquired knowledge. TI is known for exhibiting various behavioral and neural signatures, such as the Serial Position Effect (SPE), Symbolic Distance Effect (SDE), and the brain's capacity to maintain and merge separate ranking models. We propose a novel framework that casts TI as a probabilistic preference learning task, using one-parameter Mallows models. We present a series of simulations that highlight the effectiveness of our novel approach. We show that the Mallows ranking model natively reproduces SDE and SPE. Furthermore, extending the model using Bayesian selection showcases its capacity to generate and merge ranking hypotheses as pairs with connecting symbols are encountered. Finally, we employ neural networks to replicate Mallows models, demonstrating how this framework aligns with observed prefrontal neural activity during TI. Our innovative approach sheds new light on the nature of TI, emphasizing the potential of probabilistic preference learning for unraveling its underlying neural mechanisms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.