Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Analytical Gaussian Process Cosmography: Unveiling Insights into Matter-Energy Density Parameter at Present (2311.13498v2)

Published 22 Nov 2023 in astro-ph.CO and gr-qc

Abstract: In this study, we introduce a novel analytical Gaussian Process (GP) cosmography methodology, leveraging the differentiable properties of GPs to derive key cosmological quantities analytically. Our approach combines cosmic chronometer (CC) Hubble parameter data with growth rate (f) observations to constrain the $\Omega_{\rm m0}$ parameter, offering insights into the underlying dynamics of the Universe. By formulating a consistency relation independent of specific cosmological models, we analyze under a flat FLRW metric and first-order Newtonian perturbation theory framework. Our analytical approach simplifies the process of Gaussian Process regression (GPR), providing a more efficient means of handling large datasets while offering deeper interpretability of results. We demonstrate the effectiveness of our methodology by deriving precise constraints on $\Omega_{\rm m0}h2$, revealing $\Omega_{\rm m0}h2=0.139\pm0.017$. Moreover, leveraging $H_0$ observations, we further constrain $\Omega_{\rm m0}$, uncovering an inverse correlation between mean $H_0$ and $\Omega_{\rm m0}$. Our investigation offers a proof of concept for analytical GP cosmography, highlighting the advantages of analytical methods in cosmological parameter estimation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.