Papers
Topics
Authors
Recent
Search
2000 character limit reached

Tight Lieb-Robinson Bound for approximation ratio in Quantum Annealing

Published 21 Nov 2023 in quant-ph and cs.DS | (2311.12732v1)

Abstract: Quantum annealing (QA) holds promise for optimization problems in quantum computing, especially for combinatorial optimization. This analog framework attracts attention for its potential to address complex problems. Its gate-based homologous, QAOA with proven performance, has brought lots of attention to the NISQ era. Several numerical benchmarks try to classify these two metaheuristics however, classical computational power highly limits the performance insights. In this work, we introduce a new parametrized version of QA enabling a precise 1-local analysis of the algorithm. We develop a tight Lieb-Robinson bound for regular graphs, achieving the best-known numerical value to analyze QA locally. Studying MaxCut over cubic graph as a benchmark optimization problem, we show that a linear-schedule QA with a 1-local analysis achieves an approximation ratio over 0.7020, outperforming any known 1-local algorithms.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.