Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adapting LLMs for Efficient, Personalized Information Retrieval: Methods and Implications (2311.12287v1)

Published 21 Nov 2023 in cs.IR and cs.AI

Abstract: The advent of LLMs heralds a pivotal shift in online user interactions with information. Traditional Information Retrieval (IR) systems primarily relied on query-document matching, whereas LLMs excel in comprehending and generating human-like text, thereby enriching the IR experience significantly. While LLMs are often associated with chatbot functionalities, this paper extends the discussion to their explicit application in information retrieval. We explore methodologies to optimize the retrieval process, select optimal models, and effectively scale and orchestrate LLMs, aiming for cost-efficiency and enhanced result accuracy. A notable challenge, model hallucination-where the model yields inaccurate or misinterpreted data-is addressed alongside other model-specific hurdles. Our discourse extends to crucial considerations including user privacy, data optimization, and the necessity for system clarity and interpretability. Through a comprehensive examination, we unveil not only innovative strategies for integrating LLMs with Information Retrieval (IR) systems, but also the consequential considerations that underline the need for a balanced approach aligned with user-centric principles.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Samira Ghodratnama (9 papers)
  2. Mehrdad Zakershahrak (11 papers)
Citations (6)