Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Navigating the Knowledge Sea: Planet-scale answer retrieval using LLMs (2402.05318v1)

Published 7 Feb 2024 in cs.IR, cs.CL, and cs.LG

Abstract: Information retrieval is a rapidly evolving field of information retrieval, which is characterized by a continuous refinement of techniques and technologies, from basic hyperlink-based navigation to sophisticated algorithm-driven search engines. This paper aims to provide a comprehensive overview of the evolution of Information Retrieval Technology, with a particular focus on the role of LLMs in bridging the gap between traditional search methods and the emerging paradigm of answer retrieval. The integration of LLMs in the realms of response retrieval and indexing signifies a paradigm shift in how users interact with information systems. This paradigm shift is driven by the integration of LLMs like GPT-4, which are capable of understanding and generating human-like text, thus enabling them to provide more direct and contextually relevant answers to user queries. Through this exploration, we seek to illuminate the technological milestones that have shaped this journey and the potential future directions in this rapidly changing field.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Dipankar Sarkar (12 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets