C^0-stability of topological entropy for Reeb flows in dimension 3 (2311.12001v2)
Abstract: We study stability properties of the topological entropy of Reeb flows on contact 3-manifolds with respect to the C0-distance on the space of contact forms. Our main results show that a C\infty-generic contact form on a closed co-oriented contact 3-manifold (Y,\xi) is a lower semi-continuity point for the topological entropy, seen as a functional on the space of contact forms of (Y,\xi) endowed with the C0-distance. We also study the stability of the topological entropy of geodesic flows of Riemannian metrics on closed surfaces. In this setting, we show that a non-degenerate Riemannian metric on a closed surface S is a lower semi-continuity point of the topological entropy, seen as a functional on the space of Riemannian metrics on S endowed with the C0-distance.
- Casim Abbas. Finite energy surfaces and the chord problem. Duke Math. J., 96(2):241–316, 1999.
- Entropy collapse versus entropy rigidity for Reeb and Finsler flows. Selecta Math. (N.S.), 29(5):Paper No. 67, 2023.
- Marcelo R. R. Alves. Cylindrical contact homology and topological entropy. Geom. Topol., 20(6):3519–3569, 2016.
- Marcelo R. R. Alves. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds. J. Mod. Dyn., 10:497–509, 2016.
- Marcelo R. R. Alves. Legendrian contact homology and topological entropy. J. Topol. Anal., 11(1):53–108, 2019.
- Topological entropy for Reeb vector fields in dimension three via open book decompositions. J. Éc. polytech. Math., 6:119–148, 2019.
- C0superscript𝐶0{C}^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT-robustness of topological entropy for geodesic flows. J. Fixed Point Theory Appl., 24(2):42, 2022.
- Marcelo R. R. Alves and Matthias Meiwes. Dynamically exotic contact spheres of dimensions ≥7absent7\geq 7≥ 7. Comment. Math. Helv., 94(3):569–622, 2019.
- Marcelo R. R. Alves and Matthias Meiwes. Braid stability and the Hofer metric. Ann. Henri Lebesgue, page arXiv:2112.11351 - accepted for publication, 2021.
- Marcelo R. R. Alves and Abror Pirnapasov. Reeb orbits that force topological entropy. Ergodic Theory Dynam. Systems, 42(10):3025–3068, 2022.
- Frédéric Bourgeois. Contact homology and homotopy groups of the space of contact structures. Math. Res. Lett., 13(1):71–85, 2006.
- Compactness results in symplectic field theory. Geom. Topol., 7:799–888, 2003.
- Entropy and quasimorphisms. J. Mod. Dyn., 15:143–163, 2019.
- Topological entropy of Hamiltonian diffeomorphisms: a persistence homology and Floer theory perspective. Preprint arXiv:2111.03983, 2021.
- Hofer’s geometry and topological entropy. Compos. Math., 159(6):1250–1299, 2023.
- Generic properties of 3333-dimensional Reeb flows: Birkhoff sections and entropy. Preprint arXiv:2202.01506, 2022.
- Surfaces of section for geodesic flows of closed surfaces. Preprint arXiv:2204.11977, 2022.
- Existence of Birkhoff sections for Kupka–Smale Reeb flows of closed contact 3-manifolds. Geom. Funct. Anal., 32(5):951–979, 2022.
- Lucas Dahinden. Lower complexity bounds for positive contactomorphisms. Israel J. Math., 224(1):367–383, 2018.
- Lucas Dahinden. Positive topological entropy of positive contactomorphisms. J. Symplectic Geom., 18(3):691–732, 2020.
- Lucas Dahinden. C0superscript𝐶0{C^{0}}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT-stability of topological entropy for contactomorphisms. Commun. Contemp. Math., 23(06):2150015, 2021.
- Dragomir L. Dragnev. Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations. Comm. Pure Appl. Math., 57(6):726–763, 2004.
- Barcode entropy for Reeb flows on contact manifolds with Liouville fillings. Preprint arXiv:2305.04770, 2023.
- Quantitative conditions for right-handedness of flows. Preprint arXiv:2106.12512, 2021.
- Fiberwise volume growth via Lagrangian intersections. J. Symplectic Geom., 4(2):117–148, 2006.
- Hansjörg Geiges. An introduction to contact topology, volume 109 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2008.
- Étienne Ghys. Right-handed vector fields & the Lorenz attractor. Jpn. J. Math., 4(1):47–61, 2009.
- Barcode entropy of geodesic flows. Preprint arXiv:2212.00943, 2022.
- Helmut Hofer. Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent. Math., 114(3):515–563, 1993.
- Floer homology and Novikov rings. In The Floer memorial volume, volume 133 of Progr. Math., pages 483–524. Birkhäuser, Basel, 1995.
- Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants. Geom. Funct. Anal., 5(2):270–328, 1995.
- Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics. Ann. Inst. H. Poincaré Anal. Non Linéaire, 13(3):337–379, 1996.
- The dynamics on three-dimensional strictly convex energy surfaces. Ann. of Math. (2), 148(1):197–289, 1998.
- A Poincaré-Birkhoff theorem for tight Reeb flows on S3superscript𝑆3S^{3}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Invent. Math., pages 1–90, 2014.
- Michael Hutchings. Braid stability for periodic orbits of area-preserving surface diffeomorphisms. Preprint arXiv:2303.07133, 2023.
- Introduction to the modern theory of dynamical systems, volume 54. Cambridge University Press, 1997.
- Michael Khanevsky. Non-autonomous curves on surfaces. J. Mod. Dyn., 17:305–317, 2021.
- Ricardo Mañé. On the topological entropy of geodesic flows. J. Differential Geom., 45(1):74–93, 1997.
- Positive topological entropy of Reeb flows on spherizations. Math. Proc. Cambridge Philos. Soc., 151(1):103–128, 2011.
- Matthias Meiwes. Rabinowitz Floer homology, leafwise intersections, and topological entropy. PhD thesis, 2018.
- Matthias Meiwes. Topological entropy and orbit growth in link complements. Preprint, arXiv:2308.06047, 2023.
- Al Momin. Contact homology of orbit complements and implied existence. J. Mod. Dyn., 5:409–472, 2011.
- Sheldon E. Newhouse. Continuity properties of entropy. Ann. of Math. (2), 129(2):215–235, 1989.
- Richard Siefring. Relative asymptotic behavior of pseudoholomorphic half-cylinders. Comm. Pure Appl. Math., 61(12):1631–1684, 2008.
- Richard Siefring. Intersection theory of punctured pseudoholomorphic curves. Geom. Topol., 15(4):2351–2457, 2011.
- Persistence modules, symplectic Banach-Mazur distance and Riemannian metrics. Internat. J. Math., 32(07):2150040, 2021.
- Michael Usher. Symplectic Banach-Mazur distances between subsets of ℂnsuperscriptℂ𝑛\mathbb{C}^{n}blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. J. Topol. Anal., 14(01):231–286, 2022.
- Chris Wendl. Lectures on symplectic field theory. arXiv:1612.01009, 2016.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.