Papers
Topics
Authors
Recent
Search
2000 character limit reached

Polynomial-Time Solutions for ReLU Network Training: A Complexity Classification via Max-Cut and Zonotopes

Published 18 Nov 2023 in cs.LG, cs.CC, and stat.ML | (2311.10972v1)

Abstract: We investigate the complexity of training a two-layer ReLU neural network with weight decay regularization. Previous research has shown that the optimal solution of this problem can be found by solving a standard cone-constrained convex program. Using this convex formulation, we prove that the hardness of approximation of ReLU networks not only mirrors the complexity of the Max-Cut problem but also, in certain special cases, exactly corresponds to it. In particular, when $\epsilon\leq\sqrt{84/83}-1\approx 0.006$, we show that it is NP-hard to find an approximate global optimizer of the ReLU network objective with relative error $\epsilon$ with respect to the objective value. Moreover, we develop a randomized algorithm which mirrors the Goemans-Williamson rounding of semidefinite Max-Cut relaxations. To provide polynomial-time approximations, we classify training datasets into three categories: (i) For orthogonal separable datasets, a precise solution can be obtained in polynomial-time. (ii) When there is a negative correlation between samples of different classes, we give a polynomial-time approximation with relative error $\sqrt{\pi/2}-1\approx 0.253$. (iii) For general datasets, the degree to which the problem can be approximated in polynomial-time is governed by a geometric factor that controls the diameter of two zonotopes intrinsic to the dataset. To our knowledge, these results present the first polynomial-time approximation guarantees along with first hardness of approximation results for regularized ReLU networks.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.