Scalarization of the Reissner-Nordström black hole with higher derivative gauge field corrections (2311.10858v3)
Abstract: We discuss spontaneous scalarization of the Reissner-Nordstr\"om black hole in the presence of higher derivative gauge field corrections that arise in the context of string, as well as higher-dimensional more fundamental gravity theories. Our theory admits the Reissner-Nordstr\"om solution at the scalar vacuum of the theory ($\phi=0$) and we find that the higher order derivative gauge field correction term results in the tachyonic instability of our system once the coupling function satisfies the condition that its second derivative is positive at the scalar vacuum in the appropriate parameter space. We find that the branches do not end with an extremal black hole, rather with a singularity as indicated by the divergence of the Kretschmann scalar. The black holes can be overcharged in the sense that they may carry larger electric charge in comparison to their mass. Finally, these solutions possess larger entropy at the event horizon radius when compared to the Reissner-Nordstr\"om black hole, as well as to scalarized black holes without the higher order derivative gauge field terms, indicating in this way the thermodynamic prefer-ability of our system, when compared to existing literature, while they respect the energy conditions.
- T. Damour and G. Esposito-Farese, “Tensor - scalar gravity and binary pulsar experiments,” Phys. Rev. D 54 (1996), 1474-1491 [arXiv:gr-qc/9602056 [gr-qc]].
- D. D. Doneva, F. M. Ramazanoğlu, H. O. Silva, T. P. Sotiriou and S. S. Yazadjiev, “Scalarization,” [arXiv:2211.01766 [gr-qc]].
- P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis and E. Winstanley, “Dilatonic black holes in higher curvature string gravity,” Phys. Rev. D 54 (1996), 5049-5058 [arXiv:hep-th/9511071 [hep-th]].
- A. Bakopoulos, C. Charmousis, P. Kanti, N. Lecoeur and T. Nakas, “Black holes with primary scalar hair,” [arXiv:2310.11919 [gr-qc]].
- G. Antoniou, A. Bakopoulos and P. Kanti, “Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories,” Phys. Rev. Lett. 120 (2018) no.13, 131102 [arXiv:1711.03390 [hep-th]]; D. D. Doneva and S. S. Yazadjiev, “New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories,” Phys. Rev. Lett. 120 (2018) no.13, 131103 [arXiv:1711.01187 [gr-qc]]; H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou and E. Berti, “Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling,” Phys. Rev. Lett. 120 (2018) no.13, 131104 [arXiv:1711.02080 [gr-qc]].
- K. G. Zloshchastiev, “On co-existence of black holes and scalar field,” Phys. Rev. Lett. 94 (2005), 121101 [arXiv:hep-th/0408163 [hep-th]]; T. Karakasis, N. E. Mavromatos and E. Papantonopoulos, “Regular compact objects with scalar hair,” Phys. Rev. D 108 (2023) no.2, 024001 [arXiv:2305.00058 [gr-qc]]; A. Bakopoulos and T. Nakas, “Novel exact ultracompact and ultrasparse hairy black holes emanating from regular and phantom scalar fields,” Phys. Rev. D 107 (2023) no.12, 124035 [arXiv:2303.09116 [gr-qc]]; A. Bakopoulos and T. Nakas, “Analytic and asymptotically flat hairy (ultra-compact) black-hole solutions and their axial perturbations,” JHEP 04 (2022), 096 [arXiv:2107.05656 [gr-qc]]; C. A. R. Herdeiro and E. Radu, “Asymptotically flat black holes with scalar hair: a review,” Int. J. Mod. Phys. D 24 (2015) no.09, 1542014 [arXiv:1504.08209 [gr-qc]].
- G. Antoniou, A. Bakopoulos and P. Kanti, “Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories,” Phys. Rev. D 97 (2018) no.8, 084037 [arXiv:1711.07431 [hep-th]].
- C. F. B. Macedo, J. Sakstein, E. Berti, L. Gualtieri, H. O. Silva and T. P. Sotiriou, “Self-interactions and Spontaneous Black Hole Scalarization,” Phys. Rev. D 99 (2019) no.10, 104041 [arXiv:1903.06784 [gr-qc]].
- D. D. Doneva, K. V. Staykov and S. S. Yazadjiev, “Gauss-Bonnet black holes with a massive scalar field,” Phys. Rev. D 99 (2019) no.10, 104045 [arXiv:1903.08119 [gr-qc]].
- A. Bakopoulos, P. Kanti and N. Pappas, “Large and ultracompact Gauss-Bonnet black holes with a self-interacting scalar field,” Phys. Rev. D 101 (2020) no.8, 084059 [arXiv:2003.02473 [hep-th]].
- A. Bakopoulos, P. Kanti and N. Pappas, “Existence of solutions with a horizon in pure scalar-Gauss-Bonnet theories,” Phys. Rev. D 101 (2020) no.4, 044026 [arXiv:1910.14637 [hep-th]].
- A. Bakopoulos, G. Antoniou and P. Kanti, “Novel Black-Hole Solutions in Einstein-Scalar-Gauss-Bonnet Theories with a Cosmological Constant,” Phys. Rev. D 99 (2019) no.6, 064003 [arXiv:1812.06941 [hep-th]].
- N. Andreou, N. Franchini, G. Ventagli and T. P. Sotiriou, “Spontaneous scalarization in generalised scalar-tensor theory,” Phys. Rev. D 99 (2019) no.12, 124022 [erratum: Phys. Rev. D 101 (2020) no.10, 109903] [arXiv:1904.06365 [gr-qc]].
- G. Antoniou, A. Lehébel, G. Ventagli and T. P. Sotiriou, “Black hole scalarization with Gauss-Bonnet and Ricci scalar couplings,” Phys. Rev. D 104 (2021) no.4, 044002 [arXiv:2105.04479 [gr-qc]].
- C. A. R. Herdeiro, E. Radu, H. O. Silva, T. P. Sotiriou and N. Yunes, “Spin-induced scalarized black holes,” Phys. Rev. Lett. 126 (2021) no.1, 011103 [arXiv:2009.03904 [gr-qc]].
- A. Dima, E. Barausse, N. Franchini and T. P. Sotiriou, “Spin-induced black hole spontaneous scalarization,” Phys. Rev. Lett. 125 (2020) no.23, 231101 [arXiv:2006.03095 [gr-qc]].
- H. O. Silva, C. F. B. Macedo, T. P. Sotiriou, L. Gualtieri, J. Sakstein and E. Berti, “Stability of scalarized black hole solutions in scalar-Gauss-Bonnet gravity,” Phys. Rev. D 99 (2019) no.6, 064011 [arXiv:1812.05590 [gr-qc]]; J. L. Blázquez-Salcedo, D. D. Doneva, J. Kunz and S. S. Yazadjiev, “Radial perturbations of the scalarized Einstein-Gauss-Bonnet black holes,” Phys. Rev. D 98 (2018) no.8, 084011 [arXiv:1805.05755 [gr-qc]]; G. Antoniou, C. F. B. Macedo, R. McManus and T. P. Sotiriou, “Stable spontaneously-scalarized black holes in generalized scalar-tensor theories,” Phys. Rev. D 106 (2022) no.2, 024029 [arXiv:2204.01684 [gr-qc]].
- A. M. Pombo and D. D. Doneva, “Effects of mass and self-interaction on nonlinear scalarization of scalar-Gauss-Bonnet black holes,” [arXiv:2310.08638 [gr-qc]].
- D. D. Doneva, S. Kiorpelidi, P. G. Nedkova, E. Papantonopoulos and S. S. Yazadjiev, “Charged Gauss-Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories,” Phys. Rev. D 98 (2018) no.10, 104056 [arXiv:1809.00844 [gr-qc]].
- C. A. R. Herdeiro, E. Radu, N. Sanchis-Gual and J. A. Font, “Spontaneous Scalarization of Charged Black Holes,” Phys. Rev. Lett. 121 (2018) no.10, 101102 [arXiv:1806.05190 [gr-qc]].
- D. Garfinkle, G. T. Horowitz and A. Strominger, “Charged black holes in string theory,” Phys. Rev. D 43 (1991), 3140 [erratum: Phys. Rev. D 45 (1992), 3888]; G. W. Gibbons and K. i. Maeda, “Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields,” Nucl. Phys. B 298 (1988), 741-775; S. Priyadarshinee, S. Mahapatra and I. Banerjee, “Analytic topological hairy dyonic black holes and thermodynamics,” Phys. Rev. D 104 (2021) no.8, 084023 [arXiv:2108.02514 [hep-th]]; S. Mahapatra, S. Priyadarshinee, G. N. Reddy and B. Shukla, “Exact topological charged hairy black holes in AdS Space in D𝐷Ditalic_D-dimensions,” Phys. Rev. D 102 (2020) no.2, 024042 [arXiv:2004.00921 [hep-th]]; T. Karakasis, E. Papantonopoulos, Z. Y. Tang and B. Wang, “Rotating (2+1)-dimensional black holes in Einstein-Maxwell-dilaton theory,” Phys. Rev. D 107 (2023) no.2, 024043 [arXiv:2210.15704 [gr-qc]]; R. Gregory and J. A. Harvey, “Black holes with a massive dilaton,” Phys. Rev. D 47 (1993), 2411-2422 [arXiv:hep-th/9209070 [hep-th]]; M. Rakhmanov, “Dilaton black holes with electric charge,” Phys. Rev. D 50 (1994), 5155-5163 [arXiv:hep-th/9310174 [hep-th]]; C. J. Gao and S. N. Zhang, “Higher dimensional dilaton black holes with cosmological constant,” Phys. Lett. B 605 (2005), 185-189 [arXiv:hep-th/0411105 [hep-th]]; K. C. K. Chan and R. B. Mann, “Spinning black holes in (2+1)-dimensional string and dilaton gravity,” Phys. Lett. B 371 (1996), 199-205 [arXiv:gr-qc/9510069 [gr-qc]]; S. Priyadarshinee and S. Mahapatra, “Analytic three-dimensional primary hair charged black holes and thermodynamics,” Phys. Rev. D 108 (2023) no.4, 044017 [arXiv:2305.09172 [gr-qc]].
- P. G. S. Fernandes, C. A. R. Herdeiro, A. M. Pombo, E. Radu and N. Sanchis-Gual, “Spontaneous Scalarisation of Charged Black Holes: Coupling Dependence and Dynamical Features,” Class. Quant. Grav. 36 (2019) no.13, 134002 [erratum: Class. Quant. Grav. 37 (2020) no.4, 049501] [arXiv:1902.05079 [gr-qc]].
- Y. S. Myung and D. C. Zou, “Stability of scalarized charged black holes in the Einstein–Maxwell–Scalar theory,” Eur. Phys. J. C 79 (2019) no.8, 641 [arXiv:1904.09864 [gr-qc]].
- J. L. Blázquez-Salcedo, C. A. R. Herdeiro, J. Kunz, A. M. Pombo and E. Radu, “Einstein-Maxwell-scalar black holes: the hot, the cold and the bald,” Phys. Lett. B 806 (2020), 135493 [arXiv:2002.00963 [gr-qc]].
- D. Astefanesei, C. Herdeiro, A. Pombo and E. Radu, “Einstein-Maxwell-scalar black holes: classes of solutions, dyons and extremality,” JHEP 10 (2019), 078 [arXiv:1905.08304 [hep-th]].
- R. A. Konoplya and A. Zhidenko, “Analytical representation for metrics of scalarized Einstein-Maxwell black holes and their shadows,” Phys. Rev. D 100 (2019) no.4, 044015 [arXiv:1907.05551 [gr-qc]].
- P. G. S. Fernandes, C. A. R. Herdeiro, A. M. Pombo, E. Radu and N. Sanchis-Gual, “Charged black holes with axionic-type couplings: Classes of solutions and dynamical scalarization,” Phys. Rev. D 100 (2019) no.8, 084045 [arXiv:1908.00037 [gr-qc]].
- D. C. Zou and Y. S. Myung, “Scalarized charged black holes with scalar mass term,” Phys. Rev. D 100 (2019) no.12, 124055 [arXiv:1909.11859 [gr-qc]].
- P. G. S. Fernandes, “Einstein–Maxwell-scalar black holes with massive and self-interacting scalar hair,” Phys. Dark Univ. 30 (2020), 100716 [arXiv:2003.01045 [gr-qc]].
- G. Guo, P. Wang, H. Wu and H. Yang, “Scalarized Einstein–Maxwell-scalar black holes in anti-de Sitter spacetime,” Eur. Phys. J. C 81 (2021) no.10, 864 [arXiv:2102.04015 [gr-qc]].
- S. J. Zhang, B. Wang, E. Papantonopoulos and A. Wang, “Magnetic-induced spontaneous scalarization in dynamical Chern–Simons gravity,” Eur. Phys. J. C 83, no.1, 97 (2023) [arXiv:2209.02268 [gr-qc]].
- H. Guo, S. Kiorpelidi, X. M. Kuang, E. Papantonopoulos, B. Wang and J. P. Wu, “Spontaneous holographic scalarization of black holes in Einstein-scalar-Gauss-Bonnet theories,” Phys. Rev. D 102 (2020) no.8, 084029 [arXiv:2006.10659 [hep-th]].
- Z. Belkhadria and A. M. Pombo, “Mixed scalarization of charged black holes: from spontaneous to non-linear scalarization,” [arXiv:2311.15850 [gr-qc]].
- M. Natsuume, “Higher order correction to the GHS string black hole,” Phys. Rev. D 50 (1994), 3949-3953 [arXiv:hep-th/9406079 [hep-th]].
- D. Anninos and G. Pastras, “Thermodynamics of the Maxwell-Gauss-Bonnet anti-de Sitter Black Hole with Higher Derivative Gauge Corrections,” JHEP 07 (2009), 030 [arXiv:0807.3478 [hep-th]].
- Y. Kats, L. Motl and M. Padi, “Higher-order corrections to mass-charge relation of extremal black holes,” JHEP 12 (2007), 068 [arXiv:hep-th/0606100 [hep-th]].
- C. Charmousis, B. Gouteraux and E. Kiritsis, “Higher-derivative scalar-vector-tensor theories: black holes, Galileons, singularity cloaking and holography,” JHEP 09 (2012), 011 [arXiv:1206.1499 [hep-th]].
- Y. S. Myung and D. C. Zou, “Instability of Reissner–Nordström black hole in Einstein-Maxwell-scalar theory,” Eur. Phys. J. C 79 (2019) no.3, 273 [arXiv:1808.02609 [gr-qc]].
- D. D. Doneva, S. S. Yazadjiev, K. D. Kokkotas and I. Z. Stefanov, “Quasi-normal modes, bifurcations and non-uniqueness of charged scalar-tensor black holes,” Phys. Rev. D 82 (2010), 064030 [arXiv:1007.1767 [gr-qc]].
- E. Poisson, “A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics,” Cambridge University Press, 2009,
- J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7 (1973), 2333-2346
- R. M. Wald, “Black hole entropy is the Noether charge,” Phys. Rev. D 48 (1993) no.8, R3427-R3431 [arXiv:gr-qc/9307038 [gr-qc]].
- E. A. Kontou and K. Sanders, “Energy conditions in general relativity and quantum field theory,” Class. Quant. Grav. 37 (2020) no.19, 193001 [arXiv:2003.01815 [gr-qc]].
- M. S. Morris and K. S. Thorne, “Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity,” Am. J. Phys. 56 (1988), 395-412
- P. Dorlis, N. E. Mavromatos and S. N. Vlachos, “Bypassing Bekenstein’s no-scalar-hair theorem without violating the energy conditions,” Phys. Rev. D 108 (2023) no.6, 064004 [arXiv:2305.18031 [gr-qc]].
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.