Reconstruction of degenerate conductivity region for parabolic equations (2311.09863v1)
Abstract: We consider an inverse problem of reconstructing a degeneracy point in the diffusion coefficient in a one-dimensional parabolic equation by measuring the normal derivative on one side of the domain boundary. We analyze the sensitivity of the inverse problem to the initial data. We give sufficient conditions on the initial data for uniqueness and stability for the one-point measurement and show some examples of positive and negative results. On the other hand, we present more general uniqueness results, also for the identification of an initial data by measurements distributed over time. The proofs are based on an explicit form of the solution by means of Bessel functions of the first type. Finally, the theoretical results are supported by numerical experiments.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.