Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Self-enhancement Multitask Framework for Unsupervised Aspect Category Detection

Published 16 Nov 2023 in cs.CL | (2311.09708v1)

Abstract: Our work addresses the problem of unsupervised Aspect Category Detection using a small set of seed words. Recent works have focused on learning embedding spaces for seed words and sentences to establish similarities between sentences and aspects. However, aspect representations are limited by the quality of initial seed words, and model performances are compromised by noise. To mitigate this limitation, we propose a simple framework that automatically enhances the quality of initial seed words and selects high-quality sentences for training instead of using the entire dataset. Our main concepts are to add a number of seed words to the initial set and to treat the task of noise resolution as a task of augmenting data for a low-resource task. In addition, we jointly train Aspect Category Detection with Aspect Term Extraction and Aspect Term Polarity to further enhance performance. This approach facilitates shared representation learning, allowing Aspect Category Detection to benefit from the additional guidance offered by other tasks. Extensive experiments demonstrate that our framework surpasses strong baselines on standard datasets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.