Papers
Topics
Authors
Recent
2000 character limit reached

Measurement-induced transitions beyond Gaussianity: a single particle description (2311.09043v2)

Published 15 Nov 2023 in quant-ph and cond-mat.stat-mech

Abstract: Repeated measurements can induce entanglement phase transitions in the dynamics of quantum systems. Interacting models, both chaotic and integrable, generically show a stable volume-law entangled phase at low measurement rates which disappears for free, Gaussian fermions. Interactions break the Gaussianity of a dynamical map in its unitary part, but non-Gaussianity can be introduced through measurements as well. By comparing the entanglement and non-Gaussianity structure of different protocols, we propose a new single-particle indicator of the measurement-induced phase transition and we use it to argue in favour of the stability of the transition when non-Gaussianity is purely provided by measurements

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
  2. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
  3. M. B. Hastings, An area law for one-dimensional quantum systems, Journal of Statistical Mechanics: Theory and Experiment 2007, P08024 (2007).
  4. P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, Journal of Statistical Mechanics: Theory and Experiment 2004, P06002 (2004).
  5. H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2009).
  6. Y. Li, X. Chen, and M. P. A. Fisher, Quantum zeno effect and the many-body entanglement transition, Phys. Rev. B 98, 205136 (2018).
  7. B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9, 031009 (2019).
  8. Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven entanglement transition in hybrid quantum circuits, Phys. Rev. B 100, 134306 (2019).
  9. M. Szyniszewski, A. Romito, and H. Schomerus, Entanglement transition from variable-strength weak measurements, Phys. Rev. B 100, 064204 (2019).
  10. M. J. Gullans and D. A. Huse, Dynamical purification phase transition induced by quantum measurements, Phys. Rev. X 10, 041020 (2020).
  11. Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Phys. Rev. B 101, 104301 (2020).
  12. J. C. Hoke et al., Measurement-induced entanglement and teleportation on a noisy quantum processor, Nature 622, 481 (2023).
  13. Y. Li and M. P. A. Fisher, Statistical mechanics of quantum error correcting codes, Phys. Rev. B 103, 104306 (2021).
  14. Y. Fuji and Y. Ashida, Measurement-induced quantum criticality under continuous monitoring, Phys. Rev. B 102, 054302 (2020).
  15. Q. Tang and W. Zhu, Measurement-induced phase transition: A case study in the nonintegrable model by density-matrix renormalization group calculations, Phys. Rev. Res. 2, 013022 (2020).
  16. G. Cecile, H. Lóio, and J. D. Nardis, Measurement-induced phase transitions by matrix product states scaling (2024), arXiv:2402.13160 [cond-mat.stat-mech] .
  17. X. Cao, A. Tilloy, and A. D. Luca, Entanglement in a fermion chain under continuous monitoring, SciPost Phys. 7, 024 (2019).
  18. O. Alberton, M. Buchhold, and S. Diehl, Entanglement transition in a monitored free-fermion chain: From extended criticality to area law, Phys. Rev. Lett. 126, 170602 (2021).
  19. G. Kells, D. Meidan, and A. Romito, Topological transitions in weakly monitored free fermions, SciPost Phys. 14, 031 (2023).
  20. K. Chahine and M. Buchhold, Entanglement phases, localization and multifractality of monitored free fermions in two dimensions (2023), arXiv:2309.12391 [cond-mat.str-el] .
  21. I. Peschel and V. Eisler, Reduced density matrices and entanglement entropy in free lattice models, Journal of Physics A: Mathematical and Theoretical 42, 504003 (2009).
  22. A. Paviglianiti and A. Silva, Multipartite entanglement in the measurement-induced phase transition of the quantum ising chain (2023), arXiv:2302.06477 [quant-ph] .
  23. M. Žnidarič, T. Prosen, and P. Prelovšek, Many-body localization in the heisenberg x⁢x⁢z𝑥𝑥𝑧xxzitalic_x italic_x italic_z magnet in a random field, Phys. Rev. B 77, 064426 (2008).
  24. A. Pal and D. A. Huse, Many-body localization phase transition, Phys. Rev. B 82, 174411 (2010).
  25. M. Hopjan, F. Heidrich-Meisner, and V. Alba, Scaling properties of a spatial one-particle density-matrix entropy in many-body localized systems, Phys. Rev. B 104, 035129 (2021).
  26. J. Hauschild and F. Pollmann, Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy), SciPost Phys. Lect. Notes , 5 (2018), code available from https://github.com/tenpy/tenpy, arXiv:1805.00055 .
  27. M. G. Genoni, M. G. A. Paris, and K. Banaszek, Quantifying the non-gaussian character of a quantum state by quantum relative entropy, Phys. Rev. A 78, 060303 (2008).
  28. M. G. Genoni and M. G. A. Paris, Quantifying non-gaussianity for quantum information, Phys. Rev. A 82, 052341 (2010).
  29. V. Vedral, The role of relative entropy in quantum information theory, Rev. Mod. Phys. 74, 197 (2002).
  30. P. Marian and T. A. Marian, Relative entropy is an exact measure of non-gaussianity, Phys. Rev. A 88, 012322 (2013).
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.