2000 character limit reached
Relaxation strength for multilinear optimization: McCormick strikes back (2311.08570v2)
Published 14 Nov 2023 in math.OC, cs.DM, and math.CO
Abstract: We consider linear relaxations for multilinear optimization problems. In a paper, Khajavirad proved that the extended flower relaxation is at least as strong as the relaxation of any recursive McCormick linearization (Operations Research Letters 51 (2023) 146-152). In this paper we extend the result to more general linearizations, and present a simpler proof. Moreover, we complement Khajavirad's result by showing that the intersection of the relaxations of such linearizations and the extended flower relaxation are equally strong.
- Non-convex mixed-integer nonlinear programming: A survey. Surveys in Operations Research and Management Science, 17:97–106, 2012. doi:10.1016/j.sorms.2012.08.001.
- George B. Dantzig. Maximization of a linear function of variables subject to linear inequalities. In Tjalling C. Koopmans, editor, Activity Analysis of Production and Allocation, Cowles Commission Monograph No. 13, pages 339–347. John Wiley & Sons, Inc., 1951.
- Chvátal rank in binary polynomial optimization. INFORMS Journal on Optimization, 2021. doi:10.1287/ijoo.2019.0049.
- A Polyhedral Study of Binary Polynomial Programs. Mathematics of Operations Research, 42(2):389–410, 2017. doi:10.1287/moor.2016.0804.
- The multilinear polytope for acyclic hypergraphs. SIAM Journal on Optimization, 28(2):1049–1076, 2018. doi:10.1137/16M1095998.
- The running intersection relaxation of the multilinear polytope. Mathematics of Operations Research, 2021. doi:10.1287/moor.2021.1121.
- On the impact of running intersection inequalities for globally solving polynomial optimization problems. Mathematical Programming Computation, 12(2):165–191, 2020. doi:10.1007/s12532-019-00169-z.
- Simple odd β𝛽\betaitalic_β-cycle inequalities for binary polynomial optimization. In Karen Aardal and Laura Sanità, editors, Integer Programming and Combinatorial Optimization, pages 181–194. Springer International Publishing, 2022. doi:10.1007/978-3-031-06901-7_14.
- Simple odd β𝛽\betaitalic_β-cycle inequalities for binary polynomial optimization. Mathematical Programming, Jul 2023. doi:10.1007/s10107-023-01992-y.
- Lloyd L. Dines. Systems of linear inequalities. Annals of Mathematics, pages 191–199, 1919.
- Robert Fortet. Applications de l’algebre de boole en recherche opérationelle. Revue Française de Recherche Opérationelle, 4(14):17–26, 1960.
- Robert Fortet. L’algebre de boole et ses applications en recherche operationnelle. Trabajos de Estadistica, 4:17–26, 1960. doi:10.1007/BF03006558.
- Jean Baptiste Joseph Fourier. Analyse des travaux de i’academie royale des sciences pendant i’annee 1824. Partie mathematique, Histoire de l’Academie Royale des Sciences de l’Institut de France, 7:xlvii–lv, 1827.
- Further reduction of zero-one polynomial programming problems to zero-one linear programming problems. Operations Research, 21(1):156–161, 1973. doi:10.1287/opre.21.1.156.
- Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program. Operations Research, 22(1):180–182, 1974. doi:10.1287/opre.22.1.180.
- Leonid Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii Nauk, 244:1093–1096, 1979.
- Aida Khajavirad. On the strength of recursive mccormick relaxations for binary polynomial optimization. Operations Research Letters, 51(2):146–152, 2023. doi:10.1016/j.orl.2023.01.009.
- Some results on the strength of relaxations of multilinear functions. Mathematical Programming, 136(2):325–351, 2012. doi:10.1007/s10107-012-0606-z.
- Garth P. McCormick. Computability of global solutions to factorable nonconvex programs: Part i — convex underestimating problems. Mathematical Programming, 10(1):147–175, 1976. doi:10.1007/BF01580665.
- Theodore S. Motzkin. Beiträge zur Theorie der linearen Ungleichungen. PhD thesis, Universität Basel, 1936.
- Convex extensions and envelopes of lower semi-continuous functions. Mathematical Programming, 93:247–263, 2002. doi:10.1007/s10107-002-0308-z.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.