Papers
Topics
Authors
Recent
2000 character limit reached

Relaxation strength for multilinear optimization: McCormick strikes back (2311.08570v2)

Published 14 Nov 2023 in math.OC, cs.DM, and math.CO

Abstract: We consider linear relaxations for multilinear optimization problems. In a paper, Khajavirad proved that the extended flower relaxation is at least as strong as the relaxation of any recursive McCormick linearization (Operations Research Letters 51 (2023) 146-152). In this paper we extend the result to more general linearizations, and present a simpler proof. Moreover, we complement Khajavirad's result by showing that the intersection of the relaxations of such linearizations and the extended flower relaxation are equally strong.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Non-convex mixed-integer nonlinear programming: A survey. Surveys in Operations Research and Management Science, 17:97–106, 2012. doi:10.1016/j.sorms.2012.08.001.
  2. George B. Dantzig. Maximization of a linear function of variables subject to linear inequalities. In Tjalling C. Koopmans, editor, Activity Analysis of Production and Allocation, Cowles Commission Monograph No. 13, pages 339–347. John Wiley & Sons, Inc., 1951.
  3. Chvátal rank in binary polynomial optimization. INFORMS Journal on Optimization, 2021. doi:10.1287/ijoo.2019.0049.
  4. A Polyhedral Study of Binary Polynomial Programs. Mathematics of Operations Research, 42(2):389–410, 2017. doi:10.1287/moor.2016.0804.
  5. The multilinear polytope for acyclic hypergraphs. SIAM Journal on Optimization, 28(2):1049–1076, 2018. doi:10.1137/16M1095998.
  6. The running intersection relaxation of the multilinear polytope. Mathematics of Operations Research, 2021. doi:10.1287/moor.2021.1121.
  7. On the impact of running intersection inequalities for globally solving polynomial optimization problems. Mathematical Programming Computation, 12(2):165–191, 2020. doi:10.1007/s12532-019-00169-z.
  8. Simple odd β𝛽\betaitalic_β-cycle inequalities for binary polynomial optimization. In Karen Aardal and Laura Sanità, editors, Integer Programming and Combinatorial Optimization, pages 181–194. Springer International Publishing, 2022. doi:10.1007/978-3-031-06901-7_14.
  9. Simple odd β𝛽\betaitalic_β-cycle inequalities for binary polynomial optimization. Mathematical Programming, Jul 2023. doi:10.1007/s10107-023-01992-y.
  10. Lloyd L. Dines. Systems of linear inequalities. Annals of Mathematics, pages 191–199, 1919.
  11. Robert Fortet. Applications de l’algebre de boole en recherche opérationelle. Revue Française de Recherche Opérationelle, 4(14):17–26, 1960.
  12. Robert Fortet. L’algebre de boole et ses applications en recherche operationnelle. Trabajos de Estadistica, 4:17–26, 1960. doi:10.1007/BF03006558.
  13. Jean Baptiste Joseph Fourier. Analyse des travaux de i’academie royale des sciences pendant i’annee 1824. Partie mathematique, Histoire de l’Academie Royale des Sciences de l’Institut de France, 7:xlvii–lv, 1827.
  14. Further reduction of zero-one polynomial programming problems to zero-one linear programming problems. Operations Research, 21(1):156–161, 1973. doi:10.1287/opre.21.1.156.
  15. Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program. Operations Research, 22(1):180–182, 1974. doi:10.1287/opre.22.1.180.
  16. Leonid Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii Nauk, 244:1093–1096, 1979.
  17. Aida Khajavirad. On the strength of recursive mccormick relaxations for binary polynomial optimization. Operations Research Letters, 51(2):146–152, 2023. doi:10.1016/j.orl.2023.01.009.
  18. Some results on the strength of relaxations of multilinear functions. Mathematical Programming, 136(2):325–351, 2012. doi:10.1007/s10107-012-0606-z.
  19. Garth P. McCormick. Computability of global solutions to factorable nonconvex programs: Part i — convex underestimating problems. Mathematical Programming, 10(1):147–175, 1976. doi:10.1007/BF01580665.
  20. Theodore S. Motzkin. Beiträge zur Theorie der linearen Ungleichungen. PhD thesis, Universität Basel, 1936.
  21. Convex extensions and envelopes of lower semi-continuous functions. Mathematical Programming, 93:247–263, 2002. doi:10.1007/s10107-002-0308-z.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.