Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Secondary beams at high-intensity electron accelerator facilities (2311.08440v3)

Published 14 Nov 2023 in physics.acc-ph, hep-ex, and nucl-ex

Abstract: The interaction of a high-current $O$(100~\textmu A), medium energy $O$(10\,GeV) electron beam with a thick target $O$(1m) produces an overwhelming shower of standard matter particles in addition to hypothetical Light Dark Matter particles. While most of the radiation (gamma, electron/positron, and neutron) is contained in the thick target, deep penetrating particles (muons, neutrinos, and light dark matter particles) propagate over a long distance, producing high-intense secondary beams. Using sophisticated Monte Carlo simulations based on FLUKA and GEANT4, we explored the characteristics of secondary muons and neutrinos and (hypothetical) dark scalar particles produced by the interaction of Jefferson Lab 11 GeV intense electron beam with the experimental Hall-A beam dump. Considering the possible beam energy upgrade, this study was repeated for a 20 GeV CEBAF beam.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report. In Proceedings of the U.S. Cosmic Visions: New Ideas in Dark Matter, College Park, MD, USA, 23–25 March 2017; p. 7. https://doi.org/10.48550/arXiv.1707.04591.
  2. The potential of the ILC beam dump for high-intensity and large-area irradiation field with atmospheric-like neutrons and muons. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2023, 1050, 168144. https://doi.org/10.1016/j.nima.2023.168144.
  3. Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab. arXiv 2023, arXiv:2306.09360. https://doi.org/10.48550/arXiv.2306.09360.
  4. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nucl. Data Sheets 2014, 120, 211–214. https://doi.org/10.1016/j.nds.2014.07.049.
  5. FLUKA: A Multi-Particle Transport Code (Program Version 2005); CERN: Geneva, Switzerland, 2005. https://doi.org/10.2172/877507.
  6. GEANT4: A Simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2003, 506, 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8.
  7. Measurements of the muon flux produced by 10.6 GeV electrons in a beam dump. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2019, 925, 116–122. https://doi.org/10.1016/j.nima.2019.02.001.
  8. Dark matter search with the BDX-MINI experiment. Phys. Rev. D 2022, 106, 072011. https://doi.org/10.1103/PhysRevD.106.072011.
  9. The Official CERN FLUKA Website. 2023. Available online: https://fluka.cern/ accessed on 1 January 2024.
  10. New Capabilities of the FLUKA Multi-Purpose Code. Front. Phys. 2022, 9, 788253. https://doi.org/10.3389/fphy.2021.788253.
  11. Overview of the FLUKA code. Ann. Nucl. Energy 2015, 82, 10–18. https://doi.org/10.1016/j.anucene.2014.11.007.
  12. Generator of neutrino-nucleon interactions for the FLUKA based simulation code. AIP Conf. Proc. 2009, 1189, 343–346. https://doi.org/10.1063/1.3274183.
  13. Kharashvili, M. JLAB-TN-16-048; Technical Report; 2016. https://userweb.jlab.org/~battagli/bdx/16-048.pdf
  14. ROOT—An object oriented data analysis framework. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1997, 389, 81–86. https://doi.org/10.1016/S0168-9002(97)00048-X.
  15. Python Interface: PyROOT. 2023. Available online: https://root.cern/manual/python/ accessed on 1 January 2024.
  16. Dark Matter Search in a Beam-Dump eXperiment (BDX) at Jefferson Lab. https://doi.org/10.48550/arXiv.1607.01390.
  17. The CLAS12 Geant4 simulation. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2020, 959, 163422. https://doi.org/10.1016/j.nima.2020.163422.
  18. Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab—2018 update to PR12-16-001. arXiv 2019, arXiv.1712.01518. https://doi.org/10.48550/arXiv.1712.01518.
  19. Probing Leptophilic Dark Sectors at Electron Beam-Dump Facilities. Phys. Rev. D 2018, 98, 115022. https://doi.org/10.1103/PhysRevD.98.115022.
  20. Muon Beam Experiments to Probe the Dark Sector. Phys. Rev. D 2017, 95, 115005. https://doi.org/10.1103/PhysRevD.95.115005.
  21. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm. arXiv 2023, arXiv.2308.06230. https://doi.org/10.48550/arXiv.2308.06230.
  22. Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter; International Series of Monographs on Physics; OUP Oxford: Oxford, UK, 2011.
  23. Muography for Inspection of Civil Structures. Instruments 2022, 6, 77. https://doi.org/10.3390/instruments6040077.
  24. µSR Beamlines at TRIUMF. 2023. Available online: https://cmms.triumf.ca/equip/muSRbeamlines.html accessed on 1 January 2024.
  25. Kiselev, D. PSI Muon Facilities. 2023. Available online: https://indico.cern.ch/event/1016248/contributions/4282379/attachments/2215080/3749805/Muoncollider_CERN24.3.2021.pdf accessed on 1 January 2024.
  26. J-PARC muon source, MUSE. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2009, 600, 22–24. https://doi.org/10.1016/j.nima.2008.11.016.
  27. ISIS Muon Source. 2023. Available online: https://www.isis.stfc.ac.uk/Pages/Muons.aspxaccessed on 1 January 2024.
  28. Ganguly, S. Muon Campus at Fermilab. arXiv 2022, arXiv.2208.02889. https://doi.org/10.48550/arXiv.2208.02889.
  29. M2 Beam Line. 2023. Available online: https://sba.web.cern.ch/sba/BeamsAndAreas/M2/M2_presentation.html accessed on 1 January 2024.
  30. SEEMS: A Single Event Effects and Muon Spectroscopy facility at the Spallation Neutron Source. Rev. Sci. Instrum. 2023, 94, 033908. https://doi.org/10.1063/5.0135721.
  31. Kim, Y.J. Current status of experimental facilities at RAON. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2020, 463, 408–414. https://doi.org/10.1016/j.nimb.2019.04.041.
  32. Design of the surface muon beamline of MELODY. J. Phys. Conf. Ser. 2023, 2462, 012027. https://doi.org/10.1088/1742-6596/2462/1/012027.
  33. A high energy, small phase-space volume muon beam. Nucl. Instrum. Methods 1969, 69, 77–88. https://doi.org/10.1016/0029-554X(69)90575-8.
  34. Chapelain, A. The Muon g-2 experiment at Fermilab. EPJ Web Conf. 2017, 137, 08001. https://doi.org/10.1051/epjconf/201713708001.
  35. Simulating the neutrino flux from the Spallation Neutron Source for the COHERENT experiment. Phys. Rev. D 2022, 106, 032003. https://doi.org/10.1103/PhysRevD.106.032003.
  36. First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon. Phys. Rev. Lett. 2021, 126, 012002. https://doi.org/10.1103/PhysRevLett.126.012002.
  37. Constraining nonstandard interactions with coherent elastic neutrino-nucleus scattering at the European Spallation Source. Phys. Rev. D 2023, 107, 055019. https://doi.org/10.1103/PhysRevD.107.055019.
  38. The liquid scintillator neutrino detector and LAMPF neutrino source. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. 1997, 388, 149–172. https://doi.org/10.1016/S0168-9002(96)01155-2.
  39. Neutrino flux prediction at MiniBooNE. Phys. Rev. D 2009, 79, 072002. https://doi.org/10.1103/PhysRevD.79.072002.
  40. History of dark matter. Rev. Mod. Phys. 2018, 90, 045002. https://doi.org/10.1103/RevModPhys.90.045002.
  41. Krnjaic, G. Probing Light Thermal Dark-Matter With a Higgs Portal Mediator. Phys. Rev. D 2016, 94, 073009. https://doi.org/10.1103/PhysRevD.94.073009.
  42. The Physics of the Dark Photon—A Primer; Springer International Publishing: Cham, Switzerland, 2020.
  43. Searching in the dark: the hunt for the dark photon. Rev. Phys. 2020, 5, 100042. https://doi.org/10.1016/j.revip.2020.100042.
  44. Liddle, A.R. An Introduction to Modern Cosmology; Wiley: Hoboken, NJ, USA, 2003.
  45. Domain of thermal dark matter candidates. Phys. Rev. D 2021, 104, 055021. https://doi.org/10.1103/PhysRevD.104.055021.
  46. Measurement of the negative muon anomalous magnetic moment to 0.7 ppm. Phys. Rev. Lett. 2004, 92, 161802. https://doi.org/10.1103/PhysRevLett.92.161802.
  47. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. https://doi.org/10.1103/PhysRevLett.126.141801.
  48. Feebly Interacting Particles: FIPs 2022 workshop report. Eur. Phys. J. C 2023, 83, 1122. https://doi.org/10.1140/epjc/s10052-023-12168-5.
  49. The BDX-MINI detector for Light Dark Matter search at JLab. Eur. Phys. J. C 2021, 81, 164. https://doi.org/10.1140/epjc/s10052-021-08957-5.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: