Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On The Truthfulness of 'Surprisingly Likely' Responses of Large Language Models (2311.07692v2)

Published 13 Nov 2023 in cs.LG, cs.AI, cs.CL, and cs.GT

Abstract: The principle of rewarding a crowd for surprisingly common answers has been used in the literature for designing a number of truthful information elicitation mechanisms. A related method has also been proposed in the literature for better aggregation of crowd wisdom. Drawing a comparison between crowd based collective intelligence systems and LLMs, we define the notion of 'surprisingly likely' textual response of a LLM. This notion is inspired by the surprisingly common principle, but tailored for text in a LLM. Using benchmarks such as TruthfulQA and openly available LLMs: GPT-2 and LLaMA-2, we show that the surprisingly likely textual responses of LLMs are more accurate in many cases compared to standard baselines. For example, we observe up to 24 percentage points aggregate improvement on TruthfulQA and up to 70 percentage points improvement on individual categories of questions in this benchmark. We also provide further analysis of the results, including the cases when surprisingly likely responses are less or not more accurate.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.