Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The shifted convolution L-function for Maass forms (2311.06587v3)

Published 11 Nov 2023 in math.NT

Abstract: Let $\Phi_1,\Phi_2$ be Maass forms for $\text{SL}(2,\mathbb Z)$ with Fourier coefficients $C_1(n),C_2(n)$. For a positive integer $h$ the meromorphic continuation and growth in $s\in\mathbb C$ (away from poles) of the shifted convolution L-function $$L_h(s,{\Phi_1,\Phi_2})\, := \sum_{n \neq 0,-h} {C_1(n) C_2(n + h)} \cdot \big|n(n + h)\big|{-\frac{1}{2}s}$$ is obtained. For ${\rm Re}(s) > 0$ it is shown that the only poles are possible simple poles at $\frac{1}{2} \pm ir_k$, where $\tfrac14+r_k2$ are eigenvalues of the Laplacian. As an application we obtain, for $T\to\infty$, the asymptotic formula \begin{align*} & \underset{n \neq 0,-h}{\sum_{\sqrt{|n (n + h)|}<T} } \hskip-5pt{C_1(n) C_2(n + h)} \left(\text{log}\Big(\tfrac{T}{\sqrt{|n (n + h)|}}\,\Big)\right){\frac{3}{2} + \varepsilon} \hskip-7pt =\; f_{{\mathfrak r_1,\mathfrak r_2,}h,\varepsilon}(T) \cdot T{\frac{1}{2}} \; + \; \mathcal O\left( h{1-\varepsilon} T\varepsilon + h{1 + \varepsilon} T{-2 - 2\varepsilon} \right), \end{align*} where the function $f_{{\mathfrak r_1,\mathfrak r_2,}h,\varepsilon}(T)$ is given as an explicit spectral sum that satisfies the bound $f_{{\mathfrak r_1,\mathfrak r_2,}h,\varepsilon}(T) \ll h{\theta + \varepsilon}$. We also obtain a sharp bound for the above shifted convolution sum with sharp cutoff, i.e., without the smoothing weight $\log(*){\frac32+\varepsilon}$ with uniformity in the $h$ aspect. Specifically, we show that for $h < x{\frac{1}{2} - \varepsilon}$, [ {\sum_{\sqrt{|n (n + h)|} < x} C_1(n) C_2(n + h)} \ll h{\frac{2}{3}\theta + \varepsilon}x{\frac{2}{3} (1 + \theta) + \varepsilon} + h{\frac{1}{2} + \varepsilon}x{\frac{1}{2} + 2\theta + \varepsilon}. ]

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com