2000 character limit reached
A shifted convolution sum for $GL(3)\times GL(2)$ (1703.08891v1)
Published 27 Mar 2017 in math.NT
Abstract: In this paper, we estimate the shifted convolution sum [\sum_{n\geqslant1}\lambda_1(1,n)\lambda_2(n+h)V\Big(\frac{n}{X}\Big),] where $V$ is a smooth function with support in $[1,2]$, $1\leqslant|h|\leqslant X$, $\lambda_1(1,n)$ and $\lambda_2(n)$ are the $n$-th Fourier coefficients of $SL(3,\mathbf{Z})$ and $SL(2,\mathbf{Z})$ Hecke-Maass cusp forms, respectively. We prove an upper bound $O(X{\frac{21}{22}+\varepsilon})$, updating a recent result of Munshi.