Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On double shifted convolution sum of $SL(2, \mathbb{Z})$ Hecke eigen forms (1608.07063v1)

Published 25 Aug 2016 in math.NT

Abstract: Let $\lambda_i (n)$ $i= 1, 2, 3$ denote the normalised Fourier coefficients of holomorphic eigenform or Maass cusp form. In this paper we shall consider the sum: [ S:= \frac{1}{H}\sum_{h\leq H} V\left( \frac{h}{H}\right)\sum_{n\leq N} \lambda_1 (n) \lambda_2 (n+h) \lambda_3 (n+ 2h)W\left( \frac{n}{N} \right), ] \noindent where $V$ and $W$ are smooth bump functions, supported on $[1, 2]$. We shall prove a nontrivial upper bound, under the assumption that $H\geq N{1/2+ \epsilon}$.

Summary

We haven't generated a summary for this paper yet.