Papers
Topics
Authors
Recent
2000 character limit reached

Semantic-aware Sampling and Transmission in Energy Harvesting Systems: A POMDP Approach (2311.06522v4)

Published 11 Nov 2023 in eess.SP

Abstract: We address the problem of real-time remote tracking of a partially observable Markov source in an energy harvesting system with an unreliable communication channel. We consider both sampling and transmission costs. Different from most prior studies that assume the source is fully observable, the sampling cost renders the source partially observable. The goal is to jointly optimize sampling and transmission policies for two semantic-aware metrics: i) a general distortion measure and ii) the age of incorrect information (AoII). We formulate a stochastic control problem. To solve the problem for each metric, we cast a partially observable Markov decision process (POMDP), which is transformed into a belief MDP. Then, for both AoII under the perfect channel setup and distortion, we express the belief as a function of the age of information (AoI). This expression enables us to effectively truncate the corresponding belief space and formulate a finite-state MDP problem, which is solved using the relative value iteration algorithm. For the AoII metric in the general setup, a deep reinforcement learning policy is proposed to solve the belief MDP problem. Simulation results show the effectiveness of the derived policies and, in particular, reveal a non-monotonic switching-type structure of the real-time optimal policy with respect to AoI.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. A. Zakeri, M. Moltafet, M. Leinonen, and M. Codreanu, “Semantic-aware real-time tracking of a Markov source under sampling and transmission costs,” Presented at Asilomar, Oct. 2023.
  2. A. Zakeri, M. Moltafet, M. Leinonen, and M. Codreanu, “Optimal semantic-aware sampling and transmission in energy harvesting systems through the AoII,” Presented at IEEE Global Commun. Conf., Dec. 2023.
  3. S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?,” in Proc. IEEE Int. Conf. on Computer Commun., pp. 2731–2735, Orlando, FL, USA, Mar. 2012.
  4. Y. Sun, I. Kadota, R. Talak, and E. Modiano, “Age of information: A new metric for information freshness,” Synthesis Lectures on Communication Networks, vol. 12, no. 2, pp. 1–224, Dec. 2019.
  5. A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The age of incorrect information: A new performance metric for status updates,” IEEE/ACM Trans. Netw., vol. 28, no. 5, pp. 2215–2228, Oct. 2020.
  6. A. Maatouk, M. Assaad, and A. Ephremides, “The age of incorrect information: An enabler of semantics-empowered communication,” IEEE Trans. Wireless Commun., vol. 22, no. 4, pp. 2621–2635, Apr. 2023.
  7. N. Pappas and M. Kountouris, “Goal-oriented communication for real-time tracking in autonomous systems,” in Proc. IEEE Inter. Conf. on Auto. Syst. (ICAS), pp. 1–5, Montreal, QC, Canada, Aug. 2021.
  8. E. Fountoulakis, N. Pappas, and M. Kountouris, “Goal-oriented policies for cost of actuation error minimization in wireless autonomous systems,” IEEE Commun. Lett., vol. 27, no. 9, pp. 2323–2327, Sep. 2023.
  9. G. Cocco, A. Munari, and G. Liva, “Remote monitoring of two-state Markov sources via random access channels: An information freshness vs. state estimation entropy perspective,” IEEE J. Sel. Areas Inf. Theory, vol. 4, pp. 651–666, Nov. 2023.
  10. J. Yun, C. Joo, and A. Eryilmaz, “Optimal real-time monitoring of an information source under communication costs,” in Proc. IEEE Conf. on Decis. and Contr. (CDC), pp. 4767–4772, Miami, FL, USA, Dec. 2018.
  11. C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and A. Ephremides, “Towards an effective age of information: Remote estimation of a Markov source,” in Proc. IEEE INFOCOM Workshop, pp. 367–372, Honolulu, HI, USA, Apr. 2018.
  12. A. Nayak, A. E. Kalør, F. Chiariotti, and P. Popovski, “A decentralized policy for minimization of age of incorrect information in slotted ALOHA systems,” in Proc. IEEE Int. Conf. Commun., pp. 1688–1693, Rome, Italy, Jun. 2023.
  13. C. Kam, S. Kompella, and A. Ephremides, “Age of incorrect information for remote estimation of a binary Markov source,” in Proc. IEEE INFOCOM Workshop, pp. 1–6, Toronto, ON, Canada, Jul. 2020.
  14. Y. Chen and A. Ephremides, “Minimizing age of incorrect information over a channel with random delay,” arXiv:2301.06150, Feb. 2023.
  15. E. T. Ceran, D. Gündüz, and A. György, “Learning to minimize age of information over an unreliable channel with energy harvesting,” ArXiv, vol. abs/2106.16037, Jun. 2021.
  16. O. T. Yavascan, E. T. Ceran, Z. Cakir, E. Uysal, and O. Kaya, “When to pull data for minimum age penalty,” in Proc. Int. Symp. Model. and Opt. Mobile, Ad Hoc, Wireless Netw., pp. 1–8, Philadelphia, PA, USA, Oct. 2021.
  17. A. Zakeri, M. Moltafet, M. Leinonen, and M. Codreanu, “Query-age-optimal scheduling under sampling and transmission constraints,” IEEE Commun. Lett., vol. 27, no. 4, pp. 1205–1209, Apr. 2023.
  18. B. T. Bacinoglu, Y. Sun, E. Uysal, and V. Mutlu, “Optimal status updating with a finite-battery energy harvesting source,” Journal of Commun. and Netw., vol. 21, no. 3, p. 280 – 294, Jun. 2019.
  19. T. Z. Ornee and Y. Sun, “Sampling and remote estimation for the Ornstein-Uhlenbeck process through queues: Age of information and beyond,” IEEE/ACM Trans. Netw., vol. 29, no. 5, pp. 1962–1975, Oct. 2021.
  20. Y. Sun, Y. Polyanskiy, and E. Uysal, “Sampling of the Wiener process for remote estimation over a channel with random delay,” IEEE Trans. Inf. Theory, vol. 66, no. 2, pp. 1118–1135, Feb. 2020.
  21. S. Kriouile and M. Assaad, “Minimizing the age of incorrect information for real-time tracking of Markov remote sources,” in Proc. IEEE Inter. Symp. on Inf. Theory (ISIT), pp. 2978–2983, Melbourne, Australia, Jul. 2021.
  22. J. S, N. Pappas, and R. V. Bhat, “Distortion minimization with age of information and cost constraints,” in Proc. Int. Symp. Model. and Opt. Mobile, Ad Hoc, Wireless Netw., pp. 1–8, Singapore, Singapore, Aug. 2023.
  23. M. Salimnejad, M. Kountouris, and N. Pappas, “Real-time reconstruction of Markov sources and remote actuation over wireless channels,” IEEE Trans. Commun., pp. 1–1, Early Access, 2024.
  24. S. Kriouile and M. Assaad, “Minimizing the age of incorrect information for unknown Markovian source,” arXiv:2210.09681, Sep. 2023.
  25. S. Kriouile and M. Assaad, “When to pull data from sensors for minimum distance-based age of incorrect information metric,” arXiv:2202.02878, Feb. 2022.
  26. P. M. de Sant Ana, N. Marchenko, B. Soret, and P. Popovski, “Goal-oriented wireless communication for a remotely controlled autonomous guided vehicle,” IEEE Wireless Commun. Lett., vol. 12, no. 4, pp. 605–609, Apr. 2023.
  27. S. Saha, H. Singh Makkar, V. Bala Sukumaran, and C. R. Murthy, “On the relationship between mean absolute error and age of incorrect information in the estimation of a piecewise linear signal over noisy channels,” IEEE Commun. Lett., vol. 26, no. 11, pp. 2576–2580, Nov. 2022.
  28. P. A. Stavrou and M. Kountouris, “The role of fidelity in goal-oriented semantic communication: A rate distortion approach,” IEEE Trans. Commun., vol. 71, no. 7, pp. 3918–3931, Jul. 2023.
  29. A. Nayyar, T. Başar, D. Teneketzis, and V. V. Veeravalli, “Optimal strategies for communication and remote estimation with an energy harvesting sensor,” IEEE Trans. Autom. Control, vol. 58, no. 9, pp. 2246–2260, Mar. 2013.
  30. T. Z. Ornee and Y. Sun, “A Whittle index policy for the remote estimation of multiple continuous Gauss-Markov processes over parallel channels,” in Proceedings of the Int. Symp. on Theory, Algorithmic Foundations, and Protocol Design for Mobile Netw. and Mobile Computing, MobiHoc ’23, p. 91–100, New York, NY, USA, Oct. 2023.
  31. J. Holm, F. Chiariotti, A. E. Kalør, B. Soret, T. B. Pedersen, and P. Popovski, “Goal-oriented scheduling in sensor networks with application timing awareness,” IEEE Trans. Commun., vol. 71, no. 8, pp. 4513–4527, Aug. 2023.
  32. K. Bountrogiannis, A. Ephremides, P. Tsakalides, and G. Tzagkarakis, “Age of incorrect information with Hybrid ARQ under a resource constraint for N-ary symmetric Markov sources,” arXiv:2303.18128, Mar. 2023.
  33. P. Rafiee and O. Ozel, “Active status update packet drop control in an energy harvesting node,” in Proc. IEEE Works. on Sign. Proc. Adv. in Wirel. Comms., pp. 1–5, Atlanta, GA, USA, May 2020.
  34. Z. Chen, N. Pappas, E. Björnson, and E. G. Larsson, “Age of information in a multiple access channel with heterogeneous traffic and an energy harvesting node,” in Proc. IEEE INFOCOM Workshop, pp. 662–667, Paris, France, May 2019.
  35. O. Sigaud and O. Buffet, Markov decision processes in artificial intelligence. John Wiley & Sons, 2013.
  36. 3rd ed. Athena Scientific, 2007.
  37. A. Zakeri, M. Moltafet, M. Leinonen, and M. Codreanu, “Minimizing the AoI in resource-constrained multi-source relaying systems: Dynamic and learning-based scheduling,” IEEE Trans. Wireless Commun., vol. 23, no. 1, pp. 450–466, Jan. 2024.
  38. V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb., 2015.
  39. M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming. The MIT Press, 1994.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.