Quasi-Gramian Solution of a Noncommutative Extension of the Higher-Order Nonlinear Schrödinger Equation (2311.05841v1)
Abstract: The nonlinear Schr{\"o}odinger (NLS) equation, which incorporates higher-order dispersive terms, is widely employed in the theoretical analysis of various physical phenomena. In this study, we explore the non-commutative extension of the higher-order NLS equation (HNLS). We treat real or complex-valued functions, such as g1 = g1(x, t) and g2 = g2(x, t), as non-commutative, and employ the Lax pair associated with the evolution equation as in the commutation case. We derive the quasi-Gramian solution of the system by employing a binary Darboux transformation (DT). Moreover, the solution can be used to study the stability of plane waves and to understand the generation of periodic patterns in the context of modulational instability.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.