Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An extended Skyrme momentum dependent potential in asymmetric nuclear matter and transport models (2311.04026v2)

Published 7 Nov 2023 in nucl-th and nucl-ex

Abstract: Based on an extended Skyrme momentum-dependent interaction (MDI), we derive an isospin asymmetric equation of state, isospin-dependent single-particle potential and the Hamiltonian which can be used in the Boltzmann-Uehling-Uhlenbeck (BUU) model and the quantum molecular dynamics (QMD) model at the beam energy less than 1 GeV/u. As an example of the applications of extended Skyrme MDI, we also present the results obtained with the extended Skyrme momentum-dependent interaction in the improved quantum molecular dynamics model (ImQMD), and the influence of the effective mass splitting on the isospin sensitive observables, i.e., the single and double neutron-to-proton ratios, is discussed again.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. A. W. Steiner, J. M. Lattimer, and E. F. Brown, The neutron star mass-radius relation and the equation of state of dense matter, The Astrophysical Journal Letters 765, L5 (2013a).
  2. J. M. Lattimer, The nuclear equation of state and neutron star masses, Annual Review of Nuclear and Particle Science 62, 485 (2012).
  3. L. Baiotti, Gravitational waves from neutron star mergers and their relation to the nuclear equation of state, Progress in Particle and Nuclear Physics 109, 103714 (2019).
  4. B. Margalit and B. D. Metzger, The multi-messenger matrix: The future of neutron star merger constraints on the nuclear equation of state, The Astrophysical Journal Letters 880, L15 (2019).
  5. J. M. LATTIMER and M. PRAKASH., The physics of neutron stars, Science. 304, 536 (2004).
  6. A. W. Steiner, M. Hempel, and T. Fischer, Core-collapse supernova equations of state based on neutron star observations, The Astrophysical Journal 774, 17 (2013b).
  7. K. Chatziioannou, Neutron-star tidal deformability and equation-of-state constraints, General Relativity and Gravitation 52, 109 (2020).
  8. N. H. Tan, D. T. Khoa, and D. T. Loan, Equation of state of asymmetric nuclear matter and the tidal deformability of neutron star, The European Physical Journal A 57, 153 (2021).
  9. W.-J. Xie and B.-A. Li, Bayesian inference of high-density nuclear symmetry energy from radii of canonical neutron stars, The Astrophysical Journal 883, 174 (2019).
  10. J. W. Holt and Y. Lim, Dense matter equation of state and neutron star properties from nuclear theory and experiment, AIP Conference Proceedings 2127, 020019 (2019), https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/1.5117809/14067989/020019_1_online.pdf .
  11. H. Wolter et al. (TMEP), Transport model comparison studies of intermediate-energy heavy-ion collisions, Prog. Part. Nucl. Phys. 125, 103962 (2022), arXiv:2202.06672 [nucl-th] .
  12. M. D. Cozma, Feasibility of constraining the curvature parameter of the symmetry energy using elliptic flow data, The European Physical Journal A 54, 40 (2018).
  13. J. Rizzo, M. Colonna, and M. D. Toro, Fast nucleon emission as a probe of the momentum dependence of the symmetry potential, Phys. Rev. C 72, 064609 (2005).
  14. Z.-Q. Feng, Momentum dependence of the symmetry potential and its influence on nuclear reactions, Phys. Rev. C 84, 024610 (2011).
  15. J. Xu, L.-W. Chen, and B.-A. Li, Thermal properties of asymmetric nuclear matter with an improved isospin- and momentum-dependent interaction, Phys. Rev. C 91, 014611 (2015).
  16. A. Lane, Isobaric spin dependence of the optical potential and quasi-elastic (p, n) reactions, Nuclear Physics 35, 676 (1962).
  17. Z. Zhang and C. M. Ko, Pion production in a transport model based on mean fields from chiral effective field theory, Phys. Rev. C 98, 054614 (2018a).
  18. J. Aichelin, “quantum” molecular dynamic-a dynamical microscopic n-body approach to investigate fragment formation and thr nuclear eqution of state in heavy ion collisions, Physics Reports 202, 233 (1991).
  19. Y. Zhang and Z. Li, Elliptic flow and system size dependence of transition energies at intermediate energies, Phys. Rev. C 74, 014602 (2006).
  20. N. Ikeno and A. Ono, Collision integral with momentum-dependent potentials and its impact on pion production in heavy-ion collisions, Phys. Rev. C 108, 044601 (2023).
  21. L.-W. Chen, C. M. Ko, and B.-A. Li, Determination of the stiffness of the nuclear symmetry energy from isospin diffusion, Phys. Rev. Lett. 94, 032701 (2005).
  22. C. Hartnack and J. Aichelin, New parametrization of the optical potential, Phys. Rev. C 49, 2801 (1994).
  23. R. Wang, L.-W. Chen, and Y. Zhou, Extended skyrme interactions for transport model simulations of heavy-ion collisions, Phys. Rev. C 98, 054618 (2018).
  24. Y. Zhang, Z. Li, and P. Danielewicz, In-medium NNNN\mathrm{NN}roman_NN cross sections determined from the nuclear stopping and collective flow in heavy-ion collisions at intermediate energies, Phys. Rev. C 75, 034615 (2007).
  25. G. F. Bertsch, D. J. Dean, and W. Nazarewicz, Computing atomic nuclei: The universal nuclear energy density functional, SciDAC Review 6, 42 (2007).
  26. R. Furnstahl, The unedf project, Nuclear Physics News 21, 18 (2011).
  27. B. G. Carlsson and J. Dobaczewski, Convergence of density-matrix expansions for nuclear interactions, Phys. Rev. Lett. 105, 122501 (2010).
  28. H. Müther, R. Machleidt, and R. Brockmann, Dirac-brueckner-hartree-fock approach in finite nuclei, Physics Letters B 202, 483 (1988).
  29. W.-C. Chen and J. Piekarewicz, Building relativistic mean field models for finite nuclei and neutron stars, Phys. Rev. C 90, 044305 (2014).
  30. Z. Zhang and L.-W. Chen, Isospin splitting of the nucleon effective mass from giant resonances in Pb208superscriptPb208{}^{208}\mathrm{Pb}start_FLOATSUPERSCRIPT 208 end_FLOATSUPERSCRIPT roman_Pb, Phys. Rev. C 93, 034335 (2016).
  31. Y. Nara, T. Maruyama, and H. Stoecker, Momentum-dependent potential and collective flows within the relativistic quantum molecular dynamics approach based on relativistic mean-field theory, Phys. Rev. C 102, 024913 (2020).
  32. J. Margueron, R. Hoffmann Casali, and F. Gulminelli, Equation of state for dense nucleonic matter from metamodeling. i. foundational aspects, Phys. Rev. C 97, 025805 (2018).
  33. S. Das Gupta and A. Mekjian, The thermodynamic model for relativistic heavy ion collisions, Physics Reports 72, 131 (1981).
  34. G. Fai and A. Z. Mekjian, Minimal information and statistical descriptions of nuclear fragmentation, Physics Letters B 196, 281 (1987).
  35. A. S. Botvina, O. V. Lozhkin, and W. Trautmann, Isoscaling in light-ion induced reactions and its statistical interpretation, Phys. Rev. C 65, 044610 (2002).
  36. W.-H. Long, N. Van Giai, and J. Meng, Density-dependent relativistic hartree-fock approach, Physics Letters B 640, 150 (2006).
  37. Z. Zhang and C. M. Ko, Pion production in a transport model based on mean fields from chiral effective field theory, Phys. Rev. C 98, 054614 (2018b).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.