Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An algebraic formulation of nonassociative quantum mechanics (2311.03647v3)

Published 7 Nov 2023 in quant-ph, hep-th, math-ph, math.MP, and math.RA

Abstract: We develop a version of quantum mechanics that can handle nonassociative algebras of observables and which reduces to standard quantum theory in the traditional associative setting. Our algebraic approach is naturally probabilistic and is based on using the universal enveloping algebra of a general nonassociative algebra to introduce a generalized notion of associative composition product. We formulate properties of states together with notions of trace, and use them to develop GNS constructions. We describe Heisenberg and Schr\"odinger pictures of completely positive dynamics, and we illustrate our formalism on the explicit examples of finite-dimensional matrix Jordan algebras as well as the octonion algebra.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. G. E. Barnes, A. Schenkel and R. J. Szabo, “Nonassociative geometry in quasi-Hopf representation categories I: Bimodules and their internal homomorphisms,” J. Geom. Phys. 89 (2015), 111–152 [arXiv:1409.6331 [math.QA]].
  2. L. C. Biedenharn and P. Truini, “Exceptional groups and elementary particle structures,” Physica A 114 (1982), 257–270.
  3. M. Bojowald, S. Brahma and U. Büyükçam, “Testing nonassociative quantum mechanics,” Phys. Rev. Lett. 115 (2015), 220402 [arXiv:1510.07559 [quant-ph]].
  4. M. Bojowald, S. Brahma, U. Büyükçam and T. Strobl, “States in nonassociative quantum mechanics: Uncertainty relations and semiclassical evolution,” JHEP 03 (2015), 093 [arXiv:1411.3710 [hep-th]].
  5. M. Bojowald, S. Brahma, U. Büyükçam and M. van Kuppeveld, “Ground state of nonassociative hydrogen and upper bounds on the magnetic charge of elementary particles,” Phys. Rev. D 104 (2021), 105009 [arXiv:2011.07596 [hep-th]].
  6. M. Bojowald, S. Brahma, U. Büyükçam, J. Guglielmon and M. van Kuppeveld, “Small magnetic charges and monopoles in nonassociative quantum mechanics,” Phys. Rev. Lett. 121 (2018), 201602 [arXiv:1810.06540 [hep-th]].
  7. M. Bordemann and S. Waldmann, “Formal GNS construction and states in deformation quantization,” Commun. Math. Phys. 195 (1998), 549–583 [arXiv:q-alg/9607019].
  8. S. Bunk, L. Müller and R. J. Szabo, “Geometry and 2-Hilbert space for nonassociative magnetic translations,” Lett. Math. Phys. 109 (2019), 1827–1866 [arXiv:1804.08953 [hep-th]].
  9. S. Bunk, L. Müller and R. J. Szabo, “Smooth 2-group extensions and symmetries of bundle gerbes,” Commun. Math. Phys. 384 (2021), 1829–1911 [arXiv:2004.13395 [math.DG]].
  10. G. De Nittis and D. Polo Ojito, “About the notion of eigenstates for C∗superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras and some application in quantum mechanics,” J. Math. Phys. 64 (2023), 083506 [arXiv:2304.02685 [math-ph]].
  11. N. Dhankar, H. Miller and A. Tahboub, “Beck modules and alternative algebras,” arXiv:2309.07962 [math.RA].
  12. P. Facchi, G. Gramegna and A. Konderak, “Entropy of quantum states,” Entropy 23 (2021), 645 [arXiv:2104.12611 [quant-ph]].
  13. V. Ginzburg and M. Kapranov, “Koszul duality for operads,” Duke Math. J. 76 (1994), 203–272 [arXiv:0709.1228 [math.AG]].
  14. J. M. Heninger and P. J. Morrison, “Hamiltonian nature of monopole dynamics,” Phys. Lett. A 384 (2020), 126101 [arXiv:1808.08689 [math-ph]].
  15. R. Jackiw, “3-cocycle in mathematics and physics,” Phys. Rev. Lett. 54 (1985), 159–162.
  16. N. Jacobson, “Structure of alternative and Jordan bimodules,” Osaka Math. J. 6 (1954), 1–72.
  17. P. Jordan, “Über Eine Klasse Nichtassociativer Hyperkomplexer Algebren,” Nachr. Ges. Wiss. Göttingen (1932), 569–575.
  18. P. Jordan, J. von Neumann and E. P. Wigner, “On an algebraic generalization of the quantum mechanical formalism,” Ann. Math. 35 (1934), 29–64.
  19. I. Khavkine and V. Moretti, “Algebraic QFT in curved spacetime and quasifree Hadamard states: An introduction,” in: R. Brunetti, C. Dappiaggi, K. Fredenhagen and J. Yngvason (eds.), Advances in Algebraic Quantum Field Theory, Mathematical Physics Studies (Springer, Cham, 2015), pp. 191–251 [arXiv:1412.5945 [math-ph]].
  20. A. I. Kornev and I. P. Shestakov, “On associative representations of nonassociative algebras,” J. Alg. Appl. 17 (2018), 1850051.
  21. V. G. Kupriyanov and R. J. Szabo, “G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-structures and quantization of non-geometric M-theory backgrounds,” JHEP 02 (2017), 099 [arXiv:1701.02574 [hep-th]].
  22. V. G. Kupriyanov and R. J. Szabo, “Symplectic realization of electric charge in fields of monopole distributions,” Phys. Rev. D 98 (2018), 045005 [arXiv:1803.00405 [hep-th]].
  23. M. Liebmann, H. Rühaak and B. Henschenmacher, “Nonassociative algebras and quantum physics – A historical perspective,” arXiv:1909.04027 [math-ph].
  24. D. Lüst, E. Malek and R. J. Szabo, “Non-geometric Kaluza-Klein monopoles and magnetic duals of M-theory R𝑅Ritalic_R-flux backgrounds,” JHEP 10 (2017), 144 [arXiv:1705.09639 [hep-th]].
  25. D. Mylonas, P. Schupp and R. J. Szabo, “Non-geometric fluxes, quasi-Hopf twist deformations and nonassociative quantum mechanics,” J. Math. Phys. 55 (2014), 122301 [arXiv:1312.1621 [hep-th]].
  26. D. Mylonas, P. Schupp and R. J. Szabo, “Nonassociative geometry and twist deformations in non-geometric string theory,” Proc. Sci. 200 (2014), 007 [arXiv:1402.7306 [hep-th]].
  27. Y. Nambu, “Generalized Hamiltonian dynamics,” Phys. Rev. D 7 (1973), 2405–2412.
  28. J. M. Osborn, “Modules over nonassociative rings,” Commun. Alg. 6 (1978), 1297–1358.
  29. L. Rinehart, “Eigenstates of C∗superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras,” arXiv:2102.07049 [math.OA].
  30. R. D. Schafer, “Structure and representation of nonassociative algebras,” Bull. Amer. Math. Soc. 61 (1955), 469–484.
  31. R. J. Szabo, “Magnetic monopoles and nonassociative deformations of quantum theory,” J. Phys. Conf. Ser. 965 (2018), 012041 [arXiv:1709.10080 [hep-th]].
  32. R. J. Szabo, “Quantization of magnetic Poisson structures,” Fortsch. Phys. 67 (2019), 1910022 [arXiv:1903.02845 [hep-th]].
  33. R. J. Szabo, “An introduction to nonassociative physics,” Proc. Sci. 347 (2019), 100 [arXiv:1903.05673 [hep-th]].
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.